" THE DESIGN AND ANALYSIS OF
 INSTRUCTION SET PROCESSORS

b
£
4

g

.

¥
ikl

g [ﬁ

4

&

//

| [1 B
W
[

~ MarioR. Barbacci and Daniel P Siewiorek

The Design and Analysis
of
Instruction Set Processors

Mario R. Barbacci

Daniel P. Siewiorek

Carnegie-Mellon University

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogota Hamburg Johannesburg
London Madrid Mexico Montreal New Dehli Panama Paris Sdo Paulo Singapore
Sydney Tokyo Toronto

The Design and Analysis of Instruction Set Processors

Copyright © 1982 by McGraw-Hill, Inc. All rights reserved. Printed in the
United States of America. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or
distributed in any form or by any means, or stored in a data base or
retrieval system, without prior written permission of the publisher.

234567890SMSMB898765432
ISBN 0-07-057303-4

The editor was James E. Vastyan; the production supervisor was Joe Campanella.
Semline, Inc., was printer and binder.

Library of Congress Cataloging in Publication Data

Barbacci, Mario R.
The design and analysis of instruction set
processors.

(McGraw-Hill computer science series)
Bibliography: p.
Includes index.
1. Computer architecture. 2. ISP (Computer
program language) 1. Siewiorek, Daniel P.
I1. Title. III. Series.
QA76.9.A73B37 621.3819°52 81-23620
ISBN 0-07-057303-4 AACR2

The Design and Analysis
of
Instruction Set Processors

McGraw-Hill Computer Science Series

Ahuja: DESIGN AND ANALYSIS OF COMPUTER COMMUNICATION NETWORKS

Allen: ANATOMY OF LISP

Barbacci and Siewiorek: THE DESIGN AND ANALYSIS OF INSTRUCTION SET PROCESSORS

Bell and Newell: COMPUTER STRUCTURES: Readings and Examples

Donovan: SYSTEMS PROGRAMMING

Gear: COMPUTER ORGANIZATION AND PROGRAMMING

Givone: INTRODUCTION TO SWITCHING CIRCUIT THEORY

Goodmann and Hedetniemi: INTRODUCTION TO THE DESIGN AND ANALYSIS OF ALGORITHMS
Hamacher, Vranesic, and Zaky: COMPUTER ORGANIZATION

Hamming: INTRODUCTION TO APPLIED NUMERICAL ANALYSIS

Hayes: COMPUTER ARCHITECTURE AND ORGANIZATION

Hellerman: DIGITAL COMPUTER SYSTEM PRINCIPLES

Hellerman and Conroy: COMPUTER SYSTEM PERFORMANCE

Katzan: MICROPROGRAMMING PRIMER

Keller: A FIRST COURSE IN COMPUTER PROGRAMMING USING PASCAL

Liu: ELEMENTS OF DISCRETE MATHEMATICS

Liu: INTRODUCTION TO COMBINATORIAL MATHEMATICS

MacEwen: INTRODUCTION TO COMPUTER SYSTEMS: Using the PDP-11 and Pascal

Madnick and Donovan: OPERATING SYSTEMS

Manna: MATHEMATICAL THEORY OF COMPUTATION

Newman and Sproull: PRINCIPLES OF INTERACTIVE COMPUTER GRAPHICS

Nilsson: PROBLEM-SOLVING METHODS IN ARTIFICIAL INTELLIGENCE

Payne: INTRODUCTION TO SIMULATION: Programming Techniques and Methods of Analysis
Rice: MATRIX COMPUTATIONS AND MATHEMATICAL SOFTWARE

Salton and McGill: INTRODUCTION TO MODERN INFORMATION RETRIEVAL

Siewiorek, Bell, and Newell: COMPUTER STRUCTURES: Principles and Examples

Stone: INTRODUCTION TO COMPUTER ORGANIZATION AND DATA STRUCTURES

Stone and Siewiorek: INTRODUCTION TO COMPUTER ORGANIZATION AND DATA STRUCTURES: PDP-11 Edition
Tonge and Feldman: cOMPUTING: An Introduction to Procedures and Procedure-Followers
Tremblay and Bunt: AN INTRODUCTION TO COMPUTER SCIENCE: An Algorithmic Approach
Tremblay and Bunt: AN INTRODUCTION TO COMPUTER SCIENCE: An Algorithmic Approach, Short Edition
Tremblay and Manohar: DISCRETE MATHEMATICAL STRUCTURES WITH APPLICATIONS TO COMPUTER SCIENCE
Tremblay and Sorenson: AN INTRODUCTION TO DATA STRUCTURES WITH APPLICATIONS
Tucker: PROGRAMMING LANGUAGES i T2
Wiederhold: DATABASE DESIGN o

McGraw-Hill Advanced Computer Science Series

Davis and Lenat: KNOWLEDGE-BASED SYSTEMS IN ARTIFICIAL INTELLIGENCE

Kogge: THE ARCHITECTURE OF PIPELINED COMPUTERS

Lindsay, Buchanan, Feigenbaum, and Lederberg: APPLICATIONS OF ARTIFICIAL INTELLIGENCE
FOR ORGANIC CHEMISTRY: The Dendral Project

Nilsson: PROBLEM-SOLVING METHODS IN ARTIFICIAL INTELLIGENCE

Waulf, Levin, and Harbison: HYDRA/C.mmp: An Experimental Computer System

to our parents

Preface

Computer Structure: Readings and Examples [Bell and Newell 1971] created a methodology to study
and compare computer systems. One of the vehicles used in the book was a computer description
notation: ISP. Since the ISP descriptions in Readings and Examples were used exclusively for
presentation of the machines (i.e., ’read only’), the notation was not formally defined. Since the
publication of Readings and Examples, we have gone through two iterations on the design and
implementation of a computer description language based on ISP. The latest version, ISPS [Barbacci et
al. 19771, is being used at many universities and companies as a design tool. Computer Structures:
Principles and Examples [Siewiorek, Bell, and Newell 1982] uses ISPS as the computer description
language.

This book is designed to present the student with a notation and methodology for the analysis of
computer architectures. The overall motivation is to present the space of architecture features spanned
by a collection of representative machines rather than presenting yet another paper machine, designed
solely for pedagogical reasons.

There are several reasons why a study of real machines is a better vehicle towards an understanding
of the architecture design process. Fundamentally, every architect must have an understanding of the
underlying technologies used to implement a computer. Technology affects the state of the art by
determining the speed and cost of the memory and central processor. These determine the basic data
types and operators of the machine, the architect’s building blocks. Market requirements also bias the
design of instruction sets towards specific application areas, languages, or modes of operation. These
two forces, together with the architect’s own vision of the design space are not always in agreement and
compromises must be achieved. By exploring real machines we attempt first, to understand the different
dimensions of the space and second, to quantify them. It is easy to see why paper machines won’t do.
They are always remarkably adequate for the task on hand, a result rarely achieved in the real world.
Moreover, they fail to present the complete picture: the compromises made in light of conflicting
requirements, the sins committed during the design, and more important, the attempts at fixing these in
later versions.

Four machines, ranging from small minicomputers to large mainframes, are used as running
examples. The first minicomputer, the DEC PDP-8, serves as an example of a simple Instruction Set
Processor. The DEC PDP-11 represents a sophisticated 16-bit minicomputer architecture. The IBM
System/370 represents the first planned computer family. Finally, the CDC 6600 is a high performance
scientific architecture.

In the process of writing complete formal descriptions, one must include many details that could be
left out otherwise. Principles and Examples only included the complete descriptions for the simplest
machines. By including complete descriptions, this book can also be used to complement Pringciples and
Examples by presenting an orthogonal view of the computer space. While in Principles and Examples,
chapters are organized around machines and the features implemented in their instruction set, this book
is organized around features and the machines that include them. This organization is also suitable for

XV

XVi Preface

the use of problems and exercises to test the student’s comprehension of a topic. The book includes
actual problems and suggestions for problems of the form: Compare feature X as implemented in
machines A, B, and C. How would you add feature Y to machine D? How would you subset (eliminate)
feature Z from machine N? Provide alternative mechanisms for a missing or incorrect implementation
of a feature?, etc.

Each chapter of this book is meant to illustrate some aspect of the architecture space. Each feature is
presented and discussed in terms of the same set of machines. The student is assumed to have some
background in digital logic, as described in courses DL-1 and DL-2 of the IEEE Curriculum [IEEE
1976], as well as some background in Assembly Language programming, numeric representation in
different bases, and conversion between bases, as covered in courses CS-3 and CS-4 of the 1978 ACM
Curriculum [Austing et al. 1979]. This book can be used in Computer Organization or Computer
Architecture courses (IEEE CO-1, IEEE CO-3, or ACM CS-6).

Many computer description languages have been proposed and one’s choice must be supported by
something more than pride of authorship. Initially ISP was introduced mainly for publication purposes.
Its implementation as a computer language has expanded considerably its usefulness. In contrast with
existing hardware description languages, ISPS is used for high level, behavioral descriptions and has
been successfully used in areas outside the traditional realm of hardware descriptions: simulation and
synthesis of combinational and sequential logic. ISPS has been used to drive both hardware and
software generators. It has been used to evaluate computer architectures and to verify software
correctness. Its use at CMU and elsewhere has produced a growing library of (real and idealized)
machine descriptions, readily available for students and researchers alike [Barbacci 1981]. This
achievement places ISPS in a class of its own. Finally, another incentive for its use is the availability of
software (compiler, simulator, CAD systems, etc.) which can be used as laboratory tools.

Organization of the Book

We place a heavy emphasis on the ability to read and understand instruction set descriptions in ISPS
and we provide in Chapter 1 a ’readers guide’ to the notation. The material is not original and has
appeared both in [Siewiorek, Bell, and Newell 1982] and [Bell, Mudge, and McNamara 1978]. In
addition, earlier versions have been used for several years in computer architecture courses at Carnegie-
Mellon University. Readers familiar with the notation can safely skip it. Nevertheless, it is advisable to
read the last section of Chapter 1, in which we describe the convention used in writing the examples and
full descriptions. The rules for capitalizing names, variables, and operators were introduced as a means
to aid in the readability of ISPS. Of course, these are not part of the language, and are offered only as a
guide towards good style.

An instruction set processor operates by interpreting bits of information stored in the memory and
registers of the machine. We begin our study of the architecture space by describing and comparing the
fundamental information units. Chapter 2 introduces the different data types and the operations
performed by the machines, how these operations interpret data as integers, floating point numbers,
characters, strings, etc. and how the information can be mapped from one format to another.

Preface XVii

Although instructions are one more data type, they play such an important role that they deserve a
separate treatment, in Chapter 3. New instruction types appear whenever a new feature is introduced.
Thus, while this chapter describes the basic formats, new ones will appear throughout the book.

Chapter 4 deals with the techniques use to extend the address space of the machine. Memory
management, relocation, and virtual address translation are the core of the chapter. Address faults,
error recovery, and interrupts are introduced here and continued in Chapters 5 and 6.

Chapter 5 deals with a fundamental property of an instruction set processor, namely, the ability to
modify its behavior by chosing alternative instruction sequences based on the result of previous
instructions. Program control and subroutines are discussed. Arithmetic operations, because of the
finite precision of the arithmetic units, have certain well defined exceptional conditions which result in
the introduction of condition codes in the processor state. In this chapter we describe what these are
and how they are computed across the different machines.

Chapter 6 places the processor in the context of a computer system. Peripheral devices for
input/output and as secondary memories constitute the main topics.

Chapter 7 deals with the design of instruction sets, the symmetry and usefulness of the instructions.

Chapter 8 treats architecture measurements. Our work on evaluating computer architectures for the
Department of Defense is based on the use of implementation independent figures of merit. The use of
abstract architecture parameters to evaluate and compare architectures and the use of a formal computer
description language to drive the collection of data is a novel topic and we believe it will prove to be one
of the most successful contributions of this book.

Selected portions of the ISPS descriptions are included throughout the book. Sometimes, in order to
keep an example concise or free of details not relevant to the topic on hand these portions have been
slightly abridged. The full ISPS descriptions however, appear in the Appendices

We would like to thank Dorothy Josephson who typed portions of the manuscript. Gary Leive is to
be commended for his effort in the writing of the ISPS descriptions. Jin Kim, Mickey Tsao, and Andy
Wilson edited the ISPS descriptions and brought them in agreement with the ISPS writing style
guidelines used throughout the book.

This book was edited and composed by the authors on a DECSysteml0 in the Department of
Computer Science at Carnegie-Mellon University. The camera-ready copy of this book was produced by
the Scribe document compiler and printed on a GSI CAT-8 Photocomposer at the Campus Printing
Office of Carnegie-Mellon University.

Mario R. Barbacci
Daniel P. Siewiorek

Table of Contents
1. The ISPS Notation

—

1.1. Instruction Set Processor Descriptions
Memory State
Processor State
Instruction Format
Partitioning the Description
1.2. Effective Address
Address Computation
Indirect Addresses
Auto Indexing
1.3. Instruction Interpretation
Operation Code O\AND: Logical And
Operation Code 1\TAD: Two's Complement Add
Operation Code 2\ISZ: Increment and Skip if Zero
Operation Code 3\DCA: Deposit and Clear Accumulator
Operation Code 4\JMS: Jump to Subroutine
Operation Code 5\JMP: Jump
Operation Code 6\iot: Input/Output
Operation Code 7\opr: Operate
1.4. Other Features of ISPS
Constants
Arithmetic Representation
Sign Extension
Data Operators (in order of precedence)

—
QO WOWOWOMOWMOWMONNNOTOTTODEDWNN = =

-—t b
bk

Control Operators 12
Predeclared Procedures 12

1.5. Summary and Writing Conventions 14

2. Data Types and Operators 16
2.1. Basic Units 15
2.2. Data Structures 23
2.3. Problems 24

3. Instruction Formats 29
3.1. Instruction Format Components 29
n-address Instructions 30
1-address Instructions 31
0O-address Instructions 31

General Register Instructions 31

Next Instruction Address 32

3.2. Addressing Modes 32
Direct Addressing 33
Immediate Addressing 33

Indirect Addressing 34

Index Addressing 34

Vii

viii

Self-Modifying Indexing Modes
Other Addressing Modes
3.3. Examples of Instruction Formats
Mark-1
PDP-8
CDC 6600
System/370
PDP-11
3.4. Problems

4. Memory Management

4.1. Bank Switching
4.2. Segmentation and Paging
Burroughs B 5000
DEC PDP-11
IBM System/370
4.3. Implementation Techniques
4.4, Problems

5. Control and Programming Techniques

5.1. Arithmetic Exceptions, Condition Codes, Skip/Branch/Jump Instructions

5.2. Loop Control
5.3. Subroutines and Coroutines

5.4. Operating System Calls, Traps, Faults, Aborts

5.5. Problems

6. Input/Output Organization

6.1. Program Controlled Input/Output
6.2. Interrupt Controlled Input/Output
PDP-8
System/370
PDP-11
Related Topics
6.3. Problems

7. Design of Instruction Sets

7.1. Address Space Size

7.2. Instruction Format: Addresses, Operators, Expansion, and Compatibility
7.3. Symmetry, Orthogonality, and Generality

7.4. Miscellaneous
7.5. Problems

8. Evaluation of Computer Architectures

8.1. The Computer Family Architecture Project

8.2. Absolute Criteria

Table of Contents

35
36
38
39
40
41
42
44
47

49

49
51
51
55
58
61
62

63

64
68
69

71
73

75

77
80
80
81
84
86
87

89

90
90
92
95
100

105

105
106

Table of

8.3.

8.4.
8.5.

Contents

Quantitative Criteria
Normalization of the Quantitative Criteria
Example

Benchmarks

Problems

|. Mark-1 ISPS Description

I.1. ** Mp.State **

1.2. ** Pc.State **

1.3. ** Instruction.Format **
I.4. ** Instruction.Execution **

Il. PDP

I1.1.
I1.2.
I1.3.
I1.4.
I1.5.
I1.6.

-8 ISPS Description

** Mp.State **

** Pc.State **

** Instruction.Format **

** Address.Calculation **
** Interpretation.Process **
** Instruction.Set **

[Il. PDP-11 ISPS Description

I.1.
1.2.
1.3.
1.4
11.5.
1.6.
1.7.
11.8.
I1.9.

** Mp.State **

** Pc.State **

** Memory.Management **

** Implementation.Declarations **
** Instruction.Format **

** Address.Calculation **

** Service.Facilities **

** Instruction.Interpretation **

** Instruction.Execution **

I1.10. ** Integer.Extended.Op.Codes **
Il.11. ** FP11C.Floating.Point.Processor **
Ill.12. ** Floating.Point.Processor.State **

.13,

Ill.14. ** Floating.Point.Instruction.Format **
I1.15. ** Floating.Point.Service.Facilities ** {us}

I.16.

IV. Sys

IV
V.2
IV.3.
V.4
IV.5.
IV.6.
VT,

tem/370 ISPS Description

** Mp.State **

** Pc.State **

** Implementation.Declarations **
** Instruction.Format **

** Address.Calculation **

** Service.Facilities ** {us)

** Floating.Point.Operators ** {us)}

** Floating.Point.Implementation.Declarations **

** Floating.Point.Instruction.Execution ** {us}

108
115
117
121
123

127

127
127
127
127

129

129
129
129
130
130
130

133

134
134
135
136
136
137
139
145
145
154
156
156
156
167
167
161

169

169
170
171
172
172
174
179

Iv.8.
IV.9.

** Instruction.Interpretation ** {us}
** |nstruction.Decoding ** {us}

IV.10. ** Instruction.Execution ** {us}

V. CDC 6600 Central Processor ISPS Description

VI.

V.
V.2
V.3.
V4.
V.5.
V.6.
V. 7.
V.8.
V..

** Central.Memory.State **

** Processor.State **

** Instruction.Format **

** Reservation.Control.State **

** Reservation.Control ** {us}

** Instruction.Fetch ** {us}

** Central.Memory.Access ** {oc}
** Exchange.Jump ** {us}

** Instruction.Cycle **

V.10. ** Branch.Unit **

V.1

. ** Boolean.Unit **

V.12, ** Shift.Unit **

V.13. ** Add.Unit **

V.14. ** Long.Add.Unit **
V.15. ** Multiply.Unit.0 **
V.16. ** Multiply.Unit.1 **
V.17. ** Divide.Unit **
V.18. ** Increment.Unit.0 **
V.19. ** Increment.Unit.1 **

CDC 6600 Peripheral Processor ISPS Description

VI,
VI.2.
VI.3.
VI.4.
VLS.
VI.6.
VIL7.

** Channel.State **

** Barrel.State **

** PCP.Memory.State **

** PCP.Instruction.Format **

** Addressing.Calculation ** {us}
** Barrel.Execution **

** PCP.Execution ** {oc}

References

Index

Table of Contents

181
182
187

215

216
216
216
216
217
219
220
221
222
223
224
224
225
226
226
226
227
227
229

231

231
231
231
231
232
232
232

237
239

Figure 1-
Figure 1-

1
2
1
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 4-1
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:

List of Figures
PDP-8 Declarations
PDP-8 Instruction Interpretation
System/370 Floating Point Addition
Self-modifying Indexing Modes
PDP-11 Addressing Modes
System/370 Instruction Format
PDP-11 Instruction Formats
Segmentation Address Translation
Paging Address Translation
Segmentation on the Burroughs B 5000
PDP-11 Page Address and Page Descriptor Registers
PDP-11 Virtual Memory Mapping
System/370 Segment and Page Tables
System/370 Memory Mapping - Part 1
System/370 Memory Mapping - Part 2
Double Precision Addition
System/370 Instruction Cycle and Execute Instruction
FORTRAN IF Statements on the PDP-8 and PDP-11
The Wheel of Reincarnation for Input/Output
PDP-11 Paper Tape Punch
PDP-8 Interrupt Control
A Typical PDP-8 Interrupt Handling Program
System/370 Program Status Word
System/370 Interrupt Handling
PDP-11 Interrupt Service -- Part 1
PDP-11 Interrupt Service -- Part 2

22
36
37
43
45
52
53
54
55
57
58
59
60
67
72
74
76
79
81
82
82
83
85
86

Xi

Table 2-
Table 2-
Table 2-

Table 2-
Table 2-

Table 7-

Table 7-4
Table 7-5:
Table 7-6:

Table 7-7:

Table 7-8:
Table 7-9:

Table 7-10:
Table 7-11:
Table 7-12:
Table 8-1:
Table 8-2:
Table 8-3:
Table 8-4:
Table 8-5:
Table 8-6:
Table 8-7:
Table 8-8:
Table 8-9:
Table 8-10:
Table 8-11:
Table 8-12:
Table 8-13:
Table 8-14:
Table 8-15:

List of Tables

The Hierarchy of Basic Units

Comparison of Three Floating Point Number Representations
Characteristics of Single Precision Floating Point Representations for Four
Example Computers.

The Hierarchy of Data Structures Constructed from Basic Units

Typical Operations

Instruction Format Dimensions

Addressing Modes

Summary of Addressing Modes

CDC 6600 Set Ai (SAi) Instructions

PDP-11 Program Counter Addressing Modes

Summary of Instruction Formats

Range of Program Control

General Exceptions

Arithmetic Exceptions

Branch Instructions by Class

Issues in the Design of an Instruction Set

Partial Instruction Decoding for the PDP-11

Example Unary and Binary Operations for a General Register ISP

CDC 6600 SAi, SBi, and SXi Instructions

Huffman Example

Impact on memory space for various op-code encoding techniques on the
Burroughs B 1700 Master Control Program

Execution Frequency for Top 36 PDP-11 Instructions, Example Huffman
Encoding by Frequency and Operation Code Lengths for the Huffman
Encoding and the PDP-11 Assignment

Frequency of Operation Code Lengths for the 36 Most Frequently Executed
Instructions as Assigned in the PDP-11 and a Huffman Encoding

Measured relative operation code frequencies for Basic and Pascal programs

on the PDP-11
Measured relative branch distances for the PDP-11 [Strecker 1976]
Relative frequency of PDP-11 Addressing Modes [Strecker 1976]

Relative Instruction Execution Frequencies for Three System/370 Programs

[Shustek 1978]

Initial CFA Candidates

Summary of Absolute Criteria

Virtual Address Space Measures

Physical Address Space Measures

Unassigned Instruction Space Measures

Size of Pc State

Usage Base Measures

I/0 Initiation Measures

Virtualizability
Direct Instruction Addressability Measures
Maximum Interrupt Latency Measures
Subroutine Linkage Measures
Quantitative Measure Weights
Summary of Quantitative Criteria
Virtual Memory Space Size -- VM

15
18
19

23
25
30
33
39
41
46
46
63
63
64
66
89
92
94
94
97
98

99

100

102

103
104
104

105
108
109
110
111
111
1112
113
113
114
115
115
11,7
117
118

Xiii

Xiv

Table 8-16:
Table 8-17:
Table 8-18:
Table 8-19:
Table 8-20:
Table 8-21:

Processor State Size -- PS

Ranking of Architectures

Double Normalized Data

Ranking of Architectures After Double Normalization
Ranking After Eliminating Mark-1 and PDP-8
Unused PDP-11 Operation Code Space

List of Tables

119
119
120
120
121
125

The ISPS Notation 1

1. The ISPS Notation

This chapter introduces the reader to the ISPS notation. Although some details have been excluded, it
covers enough of the language to provide a reading capability, to permit the reading and study of
complex descriptions. For a detailed explanation of the complete language the reader must consult the
ISPS reference manual [Barbacci et al. 1977].

1.1. Instruction Set Processor Descriptions

To describe an Instruction Set Processor (ISP), we need to define the operations, instructions, data
types, and interpretation rules used in the machine. These will be introduced gradually, as we describe
the primary memory state, the processor state, and the interpretation cycle. Primary memory is not, in
a strict sense, part of the Instruction Set Processor but it plays such an important role in its operation
that it is typically included in the description. In general, data types (integers, floating point numbers,
characters, addresses etc.) are abstractions of the contents of the machine registers and memories. One
data type that requires explicit treatment is the "instruction” and we shall explore the interpretation of
instructions in great detail.

We will use the DEC PDP-8 ISPS description as a source of examples.

Memory State
The description of the PDP-8 begins by specifying the primary memory that is used to store data and
instructions:

M\Memory[0:40951<0:11> ,

The primary memory is declared as an array of 4096 words, each 12 bits wide. The memory has a
name "M”, and an alias “"Memory”. These aliases are a special form of a comment and are useful for
indicating the meaning or usage of a register’s name. As in most programming languages, ISPS

”nn

identifiers consist of letters and digits, beginning with a letter. The character is also allowed, to
increase the readability. The expression [0:4095] describes the structure of the array. It declares the size
(4096 words) and the names of the words (0,1,..., 4094,4095). The expression <0:11> describes the

structure of each individual word. It declares the size (12 bits) and the names of the bits (0,1,...,10,11).

It should be noted that bit and word names are precisely that, i.e., identifiers for the subcomponents

of a memory structure. These names do not necessarily indicate the relative position of the
subcomponents. Thus, R<7:3> is a valid definition of a 5-bit register. The fact that the five bits are
named 7,6,5,4,3 should not be confused with the 7th, 6th, etc. positions inside the register. Thus, bit 7
is the leftmost bit, bit 6 is located in the next position towards its right, etc., while bit 3 is the rightmost
bit.

