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Preface

Computer Structure: Readings and Examples [Bell and Newell 1971] created a methodology to study
and compare computer systems. One of the vehicles used in the book was a computer description
notation: ISP. Since the ISP descriptions in Readings and Examples were used exclusively for
presentation of the machines (i.e., ’read only’), the notation was not formally defined. Since the
publication of Readings and Examples, we have gone through two iterations on the design and
implementation of a computer description language based on ISP. The latest version, ISPS [Barbacci et
al. 19771, is being used at many universities and companies as a design tool. Computer Structures:
Principles and Examples [Siewiorek, Bell, and Newell 1982] uses ISPS as the computer description
language.

This book is designed to present the student with a notation and methodology for the analysis of
computer architectures. The overall motivation is to present the space of architecture features spanned
by a collection of representative machines rather than presenting yet another paper machine, designed
solely for pedagogical reasons.

There are several reasons why a study of real machines is a better vehicle towards an understanding
of the architecture design process. Fundamentally, every architect must have an understanding of the
underlying technologies used to implement a computer. Technology affects the state of the art by
determining the speed and cost of the memory and central processor. These determine the basic data
types and operators of the machine, the architect’s building blocks. Market requirements also bias the
design of instruction sets towards specific application areas, languages, or modes of operation. These
two forces, together with the architect’s own vision of the design space are not always in agreement and
compromises must be achieved. By exploring real machines we attempt first, to understand the different
dimensions of the space and second, to quantify them. It is easy to see why paper machines won’t do.
They are always remarkably adequate for the task on hand, a result rarely achieved in the real world.
Moreover, they fail to present the complete picture: the compromises made in light of conflicting
requirements, the sins committed during the design, and more important, the attempts at fixing these in
later versions.

Four machines, ranging from small minicomputers to large mainframes, are used as running
examples. The first minicomputer, the DEC PDP-8, serves as an example of a simple Instruction Set
Processor. The DEC PDP-11 represents a sophisticated 16-bit minicomputer architecture. The IBM
System/370 represents the first planned computer family. Finally, the CDC 6600 is a high performance
scientific architecture.

In the process of writing complete formal descriptions, one must include many details that could be
left out otherwise. Principles and Examples only included the complete descriptions for the simplest
machines. By including complete descriptions, this book can also be used to complement Pringciples and
Examples by presenting an orthogonal view of the computer space. While in Principles and Examples,
chapters are organized around machines and the features implemented in their instruction set, this book
is organized around features and the machines that include them. This organization is also suitable for

XV



XVi Preface

the use of problems and exercises to test the student’s comprehension of a topic. The book includes
actual problems and suggestions for problems of the form: Compare feature X as implemented in
machines A, B, and C. How would you add feature Y to machine D? How would you subset (eliminate)
feature Z from machine N? Provide alternative mechanisms for a missing or incorrect implementation
of a feature?, etc.

Each chapter of this book is meant to illustrate some aspect of the architecture space. Each feature is
presented and discussed in terms of the same set of machines. The student is assumed to have some
background in digital logic, as described in courses DL-1 and DL-2 of the IEEE Curriculum [IEEE
1976], as well as some background in Assembly Language programming, numeric representation in
different bases, and conversion between bases, as covered in courses CS-3 and CS-4 of the 1978 ACM
Curriculum [Austing et al. 1979]. This book can be used in Computer Organization or Computer
Architecture courses (IEEE CO-1, IEEE CO-3, or ACM CS-6).

Many computer description languages have been proposed and one’s choice must be supported by
something more than pride of authorship. Initially ISP was introduced mainly for publication purposes.
Its implementation as a computer language has expanded considerably its usefulness. In contrast with
existing hardware description languages, ISPS is used for high level, behavioral descriptions and has
been successfully used in areas outside the traditional realm of hardware descriptions: simulation and
synthesis of combinational and sequential logic. ISPS has been used to drive both hardware and
software generators. It has been used to evaluate computer architectures and to verify software
correctness. Its use at CMU and elsewhere has produced a growing library of (real and idealized)
machine descriptions, readily available for students and researchers alike [Barbacci 1981]. This
achievement places ISPS in a class of its own. Finally, another incentive for its use is the availability of
software (compiler, simulator, CAD systems, etc.) which can be used as laboratory tools.

Organization of the Book

We place a heavy emphasis on the ability to read and understand instruction set descriptions in ISPS
and we provide in Chapter 1 a ’readers guide’ to the notation. The material is not original and has
appeared both in [Siewiorek, Bell, and Newell 1982] and [Bell, Mudge, and McNamara 1978]. In
addition, earlier versions have been used for several years in computer architecture courses at Carnegie-
Mellon University. Readers familiar with the notation can safely skip it. Nevertheless, it is advisable to
read the last section of Chapter 1, in which we describe the convention used in writing the examples and
full descriptions. The rules for capitalizing names, variables, and operators were introduced as a means
to aid in the readability of ISPS. Of course, these are not part of the language, and are offered only as a
guide towards good style.

An instruction set processor operates by interpreting bits of information stored in the memory and
registers of the machine. We begin our study of the architecture space by describing and comparing the
fundamental information units. Chapter 2 introduces the different data types and the operations
performed by the machines, how these operations interpret data as integers, floating point numbers,
characters, strings, etc. and how the information can be mapped from one format to another.
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Although instructions are one more data type, they play such an important role that they deserve a
separate treatment, in Chapter 3. New instruction types appear whenever a new feature is introduced.
Thus, while this chapter describes the basic formats, new ones will appear throughout the book.

Chapter 4 deals with the techniques use to extend the address space of the machine. Memory
management, relocation, and virtual address translation are the core of the chapter. Address faults,
error recovery, and interrupts are introduced here and continued in Chapters 5 and 6.

Chapter 5 deals with a fundamental property of an instruction set processor, namely, the ability to
modify its behavior by chosing alternative instruction sequences based on the result of previous
instructions. Program control and subroutines are discussed. Arithmetic operations, because of the
finite precision of the arithmetic units, have certain well defined exceptional conditions which result in
the introduction of condition codes in the processor state. In this chapter we describe what these are
and how they are computed across the different machines.

Chapter 6 places the processor in the context of a computer system. Peripheral devices for
input/output and as secondary memories constitute the main topics.

Chapter 7 deals with the design of instruction sets, the symmetry and usefulness of the instructions.

Chapter 8 treats architecture measurements. Our work on evaluating computer architectures for the
Department of Defense is based on the use of implementation independent figures of merit. The use of
abstract architecture parameters to evaluate and compare architectures and the use of a formal computer
description language to drive the collection of data is a novel topic and we believe it will prove to be one
of the most successful contributions of this book.

Selected portions of the ISPS descriptions are included throughout the book. Sometimes, in order to
keep an example concise or free of details not relevant to the topic on hand these portions have been
slightly abridged. The full ISPS descriptions however, appear in the Appendices

We would like to thank Dorothy Josephson who typed portions of the manuscript. Gary Leive is to
be commended for his effort in the writing of the ISPS descriptions. Jin Kim, Mickey Tsao, and Andy
Wilson edited the ISPS descriptions and brought them in agreement with the ISPS writing style
guidelines used throughout the book.

This book was edited and composed by the authors on a DECSysteml0 in the Department of
Computer Science at Carnegie-Mellon University. The camera-ready copy of this book was produced by
the Scribe document compiler and printed on a GSI CAT-8 Photocomposer at the Campus Printing
Office of Carnegie-Mellon University.

Mario R. Barbacci
Daniel P. Siewiorek
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The ISPS Notation 1

1. The ISPS Notation

This chapter introduces the reader to the ISPS notation. Although some details have been excluded, it
covers enough of the language to provide a reading capability, to permit the reading and study of
complex descriptions. For a detailed explanation of the complete language the reader must consult the
ISPS reference manual [Barbacci et al. 1977].

1.1. Instruction Set Processor Descriptions

To describe an Instruction Set Processor (ISP), we need to define the operations, instructions, data
types, and interpretation rules used in the machine. These will be introduced gradually, as we describe
the primary memory state, the processor state, and the interpretation cycle. Primary memory is not, in
a strict sense, part of the Instruction Set Processor but it plays such an important role in its operation
that it is typically included in the description. In general, data types (integers, floating point numbers,
characters, addresses etc.) are abstractions of the contents of the machine registers and memories. One
data type that requires explicit treatment is the "instruction” and we shall explore the interpretation of
instructions in great detail.

We will use the DEC PDP-8 ISPS description as a source of examples.

Memory State
The description of the PDP-8 begins by specifying the primary memory that is used to store data and
instructions:

M\Memory[0:40951<0:11> ,

The primary memory is declared as an array of 4096 words, each 12 bits wide. The memory has a
name "M”, and an alias “"Memory”. These aliases are a special form of a comment and are useful for
indicating the meaning or usage of a register’s name. As in most programming languages, ISPS

”nn

identifiers consist of letters and digits, beginning with a letter. The character is also allowed, to
increase the readability. The expression [0:4095] describes the structure of the array. It declares the size
(4096 words) and the names of the words (0,1,..., 4094,4095). The expression <0:11> describes the

structure of each individual word. It declares the size (12 bits) and the names of the bits (0,1,...,10,11).

It should be noted that bit and word names are precisely that, i.e., identifiers for the subcomponents

of a memory structure. These names do not necessarily indicate the relative position of the
subcomponents. Thus, R<7:3> is a valid definition of a 5-bit register. The fact that the five bits are
named 7,6,5,4,3 should not be confused with the 7th, 6th, etc. positions inside the register. Thus, bit 7
is the leftmost bit, bit 6 is located in the next position towards its right, etc., while bit 3 is the rightmost
bit.



