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Preface

This is an advanced level textbook which grew out of lecture notes
for several graduate courses 1 taught in different places over several
years. It assumes that the reader has a background of Quantum Me-
chanics, Statistical Mechanics and Condensed Matter Physics. The
methods of Green’s functions, which are standard by now, are used
fairly extensively in the book, and a mathematical introduction is
included for those not very familiar with them.

The selection of subjects aims to present a description of the be-
haviour of systems which show ordered magnetic phases. This, plus
the necessary limitation of the extension within reasonable limits,
imposed the exclusion of many important subjects, among which
diamagnetism, the Kondo effect, magnetic resonance, disordered sys-
tems, etc.

In turn, the reader will find a detailed presentation of the mean-field
approximation, which is the central paradigm for the phenomenolog-
ical description of phase transitions, a discussion of the properties
of low-dimensional magnetic systems, a somewhat detailed presen-
tation of the RKKY and related models of indirect exchange and
a chapter on surface magnetism, among other characteristics which
make it different from other texts on the subject.

This book can be used as a text for a graduate course in physics,
chemistry, chemical engineering, materials science and electrical en-
gineering and as a reference text for researchers in condensed matter
physics.

Many exercises are included in the text, and the reader is encouraged
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vi
to take an active part by trying to solve them.

I hope readers who find errors in the book, or want to suggest im-
provements, get in touch with me.

It is a great pleasure to acknowledge the moral support I enjoyed
from my wife and my children, the generous and extremely compe-
tent help with the software during the preparation of the manuscript
from Luis Alberto Giribaldo and my daughter Flavia, and the careful
reading of several chapters by June Gongalves. I want also to express
deep recognition to the Centre for the Physics of Materials of McGill
University for their support, particularly to Martin J. Zuckermann,
Martin Grant and Juan Gallego.

Norberto Majlis
Montréal, march 7th., 2000.

majlisn@physics.mcgill.ca
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Chapter 1

Paramagnetism

1.1 Introduction

Some examples of atomic systems with a permanent magnetic mo-
ment in the ground state are:

e atoms, molecules, ions or free radicals with an odd number of
~ electrons, like H, NO,C(C¢Hs)3, Na™*, etc.;

e a few molecules with an even number of electrons, like O, and
some organic compounds;

e atoms or ions with an unfilled electronic shell. This case in-
cludes:

— transition elements (3d shell incomplete);

— the rare earths (series of the lanthanides) (4f shell incom-
plete);

— the series of the actinides (5f shell incomplete).

We shall consider in the rest of this chapter that the atomic enti-
ties carrying angular momenta occupy sites on a perfect crystalline
insulator, that they are very well localized on their respective sites,
and that their mutual interactions are negligible. This implies that
we can neglect the unavoidable dipole-dipole interactions, which we
assume are so weak that they could only affect the behaviour of the
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2 CHAPTER 1. PARAMAGNETISM

system at extremely low temperatures. If such a system is placed in
an external uniform magnetic field B the Zeeman energy term is:

N
V=-B Y u (1.1)

i=1

where p; is the magnetic moment at site i. If the magnetic moments
are replaced by classical vectors, as in the semi-classic, large J limit,
the corresponding partition function for this system in the canonical
ensemble is:

: N
2= [dd% - d exp (BuoB 3 cosdy) = (2(a))" (1.2
i=1

where we have defined
z(a) = / exp (a cosf)dQ = %sinh(a) (1.3)

with a = BuoB , po = magnetic moment of each atom, 8 = 1/kgT,
dQ;-is the differential element of solid angle for the i-th dipole and @
is the angle between that dipole and the applied magnetic field.
The Gibbs free energy per particle is:

f=-kpgTlogz (1.4)

and the average magnetic moment Z per atom along the applied field
direction is, in units of ug:

f—o = -.L%g—é = coth(a) — 1/a = L(a) (1.5)

here L(a) is the Langevin function [1].

Exercise 1.1
Prove that for a € 1, that is for B — 0 or T — oo or both, the
magnetization approaches

m, ~ (N/V)udB/3kgT (1.6)
(Curie’s law) [2].
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Equation 1.5 describes Langevin paramagnetism. The typical value
of g is a few Bohr magnetons up = 10720 erg gauss 1, so that only
at very low temperatures or very high fields, like those produced
with superconducting and/or pulsed refrigerated magnets, can satu-
ration effects be observed in the m,(T") curve. We show in Fig. 1.1 a
comparison of Langevin theory with experimental measurements of
the magnetization of Cr potassium alum. These measurements were
performed in fields of up to 50,000 gauss and at temperatures down
to 1.29 K, which allowed for a large saturation degree. It is evident
from Fig. 1.1 that Langevin’s theory, which assumes continuity of the
observable values of the magnetic dipolar moment of an ion or atom,
does not fit the experiments, except at high temperatures and/or
low fields. In order to reach agreement with experiment one must
" incorporate those changes which are due to the quantum nature of
the ions, The main effects of angular momentum quantization are
twofold:

o the discrete character of the eigenvalue spectrum of the vector
components of angular momentum operators, or space quanti-
zation, leads to a statistical distibution for the magnetization
different from that obtained by Langevin. The consequence
is the substitution of Langevin’s function L(a) by Brillouin’s
function B;(a) (section 1.3).

o the paramagnetic substances we are considering in this chap-
ter are ionic crystals which contain some ions with non-zero
permanent magnetic moment in the ground-state. In the solid,
they have of course an electronic spectrum different from that
of the free ion. The main effect of the crystalline environment
that will concern us here is known as quenching of the orbital
angular momentum under certain circumstances. This effect
is observed for instance in magnetization measurements. We
define the effective magneton number p as the modulus of the
ionic magnetic moment in units of Bohr magnetons:

p=gyJ(J+1)

where J = total angular momentum of ion in units of A and
g = gyromagnetic ratio (see section 1.3). One verifies that
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Figure 1.1: Plot of fi/ 9, in arbitrary units, vs. B/T for potassium
chromium alum. The heavy solid line is a Brillouin curve for g = 2
(complete quenching of L) and J = S = 3/2 , fitted to ezperimental
data at the highest value of B/T. The thin solid line is a Brillouin
curve for g = 2[5, J = 3/2 and L = 3 (no quenching). The broken
lines are Langevin curves fitted at the highest value of B/T (lower
curve) and at the origin (slope fitting) (upper curve). From ref. [5].

agreement with experiments in the estimate of p for the Cr3*
ion is only achieved if the ground state expectation value of L
is assumed to vanish in the crystal, although for the free ion
L = 3. This quenching of L is the result of the local sym-
metry of the electrostatic potential at the Cr3* ion site in the
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solid. This potential generates the so called crystal-field, which,
having a symmetry lower than spherical, in general mixes de-
generate atomic orbitals with different My, values, and lifts the
degeneracy of the orbital manifold of states. The new orbital
ground state will be the lowest energy one among those aris-
ing from the original ground state multiplet under the effect of
the crystal-field potential. When the symmetry of the crystal-
field admits a singlet orbital ground state one can prove that
time reversal invariance leads to < L >= 0. This theorem is
proven in Section 1.5 and appendix B. We shall see that a non-
degenerate ground state requires an even number of electrons
in the outer shell of the ion.

In the experiments we refer to in this chapter the Zeeman term in
the Hamiltonian lifts the 2J + 1 degeneracy of the ground state of
the ions. For low fields the level separation is proportional to gugB
which is typically of the order of 1K, much smaller than the level
separation with the excited states, so that to a good approximation
we can neglect all excited states and consider, as in Sect. 1.3, a prob-
lem very similar to Langevin paramagnetism.

Before we discuss the quantum theory of paramagnetism, we shall
make a brief review of the quantum mechanics of atoms.

1.2 Quantum mechanics of atoms

1.2.1 L-S ( Russel-Saunders ) coupling

Let us write the Hamiltonian for an atom with Z valence electrons
(that is, Z electrons in shells exterior to a filled atomic core of total
charge +2) as:

H=Hy+Vi+V, (1.7

where 2
Ho =Y p2/2m + Vi(r) (1.8)

=1
and V,(r) is a central effective potential, which is usually calculated
in the Hartree-Fock approximation. The next two terms in Eq. 1.7
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the corrections to this approximate one-electron potential [3]. The
second one contains all the Coulomb interaction corrections to the
effective self-consistent potential V(r;):

VA
n=y —< -2 v (1.9)

Sin-nl Zon

Finally, V2 contains the magnetic interactions resulting from rela-
tivistic effects, of which the dominant ones are the spin-orbit cou-
pling terms.

The relative quantitative importance of V; and V;, varies along the
periodic table. V; reflects the fluctuations of the exact electrostatic
potential relative to the Hartree-Fock potential. The average fluctu-
ations should be negligible if the effective one-electron potential had
been well chosen. Their root mean square value is roughly propor-
tional to v/Z for large Z [3].

The contribution of the spin-orbit coupling can be estimated through
a simple calculation based on the Thomas-Fermi approximation for
the many-electron atom. This yields [3] V5 o Z2.

As an immediate consequence, one expects that the spin-orbit con-
tributions to the energy become comparable to -or even greater than-
the.Coulomb corrections given by Eq. 1.9, only for the heavier atoms.
In the case V; > V3, which applies in the transition elements,

H=~Ho+ W, (1.10)

which, being spin independent, commutes with § and with S,. Be-
sides, rigid coordinate rotations around the nucleus leave the Hamil-
tonian (1.10) invariant, so it commutes with the total angular mo-
mentum L and with L,. One can take advantage of the fact that L
and S are independently conserved by separately adding L = 2,—2 9
and S = Ziz s;, and afterwards combining both to obtain the to-
tal angular momentum J = L 4+ S, which commutes with the total
Hamiltonian. This is the L-S or Russel-Saunders coupling. The
Hamiltonian

HYS =Hy+ W (1.11)

can then be diagonalized in the many-electron basis of states

{|LSMyMs >}



