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Preface

Topics in Modal Analysis 11, Volume 8 represents one of the eight volumes of technical papers presented at the 32nd IMAC,
A Conference and Exposition on Structural Dynamics, 2014, organized by the Society for Experimental Mechanics, and held
in Orlando, Florida, February 3-6, 2014, The full proceedings also include volumes on Dynamics of Coupled Structures:
Nonlinear Dynamics; Model Validation and Uncertainty Quantification; Dynamics of Civil Structures; Structural Health
Monitoring: Special Topics in Structural Dynamics; and Topics in Modal Analysis 1.

Each collection presents early findings from experimental and computational investigations on an important area
within structural dynamics. Topics in Modal Analysis I represents papers on enabling technologies for modal analysis
measurements such as sensors and instrumentation and applications of modal analysis in specific application areas. Topics
in this volume include:

Finite element techniques
Modal parameter identification
Modal testing methods

Shock and vibration

The organizers would like to thank the authors, presenters, session organizers, and session chairs for their participation in
this track.

Cincinnati, OH, USA Randall Allemang
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Chapter 1

Integrating Multiple Algorithms in Autonomous
Modal Parameter Estimation

R.J. Allemang and A.W. Phillips

Abstract Recent work with autonomous modal parameter estimation has shown great promise in the quality of the
modal parameter estimation results when compared to results from experienced user interaction using traditional methods.
Current research with the Common Statistical Subspace Autonomous Mode Identification (CSSAMI) procedure involves
the integration of multiple modal parameter estimation algorithms into the autonomous procedure. The current work uses
possible solutions from different traditional methods like Polyreference Time Domain (PTD), Eigensystem Realization
Algorithm (ERA) and Polyreference Frequency Domain (PFD) that are combined in the autonomous procedure to yield
one consistent set of modal parameter solutions. This final, consistent set of modal parameters is identifiable due to the
combination of temporal information (the complex modal frequency) and the spatial information (the modal vectors) in a Z
domain state vector of relatively high order (5-10). Since this Z domain state vector has the complex modal frequency and
the modal vector as embedded content, sorting consistent estimates from hundreds or thousands of possible solutions is now
relatively trivial based upon the use of a state vector involving spatial information.

Keywords Autonomous ¢ Modal parameter estimation ¢ Pole weighted vector « State vector * Experimental structural
dynamics

Nomenclature

N; Number of inputs

N, Number of outputs

Ng Short dimension size

Np Long dimension size

N Number of vectors in cluster

on Discrete frequency (rad/s)
[H(w;)] FRF matrix (N, x N;)

r Mode number

P S domain polynomial root

A Complex modal frequency (rad/s)
A o +jw,

o, Modal damping

on Damped natural frequency

Z Z domain polynomial root

{V:} Base vector (modal vector)

1o} Pole weighted base vector (state vector)
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1.1 Introduction

The desire to estimate modal parameters automatically, once a set or multiple sets of test data are acquired, has been a subject
of great interest for more than 40 years. Even in the 1960s, when modal testing was limited to analog test methods, several
researchers were exploring the idea of an automated test procedure for determining modal parameters [ 1-3]. Today, with the
increased memory and compute power of current computers used to process test data, an automated or autonomous, modal
parameter estimation procedure is entirely possible and is being evaluated by numerous researchers and users.

Before proceeding with a discussion of how multiple modal parameter estimation algorithms can be combined into
autonomous modal parameter estimation, some discussion of the current autonomous modal parameter estimation procedure
is required. In general, autonomous modal parameter estimation refers to an automated procedure that is applied to a modal
parameter estimation algorithm so that no user interaction is required once the process is initiated. This typically involves
setting a number of parameters or thresholds that are used to guide the process in order to exclude solutions that are not
acceptable to the user. When the procedure finishes, a set of modal parameters is identified that can then be reduced or
expanded if necessary. The goal is that no further reduction, expansion or interaction with the process will be required.

For the purposes of further discussion, the autonomous modal parameter estimation procedure is simply an efficient
mechanism for sorting a very large number of solutions into a final set of solutions that satisfies a set of criteria and
thresholds that are acceptable to the user. When multiple modal parameter estimation algorithms are combined into a
single autonomous procedure, this yields more estimates of the modal parameters which contribute to a statistically more
significant result. Currently, the user of autonomous modal parameter estimation is assumed to be very experienced and
is using autonomous modal parameter estimation as a sophisticated tool to highlight the most likely solutions based upon

statistics. The experienced user will realize that the final solutions may include unrealistic solutions or non-optimal solutions
and further evaluation will be required.

1.2 Background

In order to discuss the impact and use of multiple modal parameter estimation algorithms in autonomous modal parameter
estimation, the importance of spatial information to the solution procedure is critical. Therefore, some background is needed
to clarify terminology and methodology. This background has been provided in previous papers [4-7] and will only be
highlighted here in terms of spatial information, modal parameter estimation and autonomous modal parameter estimation.

1.2.1 Spatial Information

Spatial information, with respect to experimental modal parameter estimation, refers to the vector information and dimension
associated with the inputs and outputs of the experimental test. Essentially, this represents the locations of the sensors in the
experimental test. It is important to recognize that an experimental test should always include multiple inputs and outputs
in order to clearly estimate different modal vectors and to resolve modal vectors when the complex natural frequencies are
close, what is called repeated or pseudo-repeated roots.

Since the data matrix. normally involving frequency response functions (FRF) or impulse response functions (IRF), is

considered to be symmetric or reciprocal, the data matrix can be transposed, switching the effective meaning of the row and
column index with respect to the physical inputs and outputs.

(H @)]n, v, = [H@)I] ., (1.1)

Since many modal parameter estimation algorithms are developed on the basis of either the number of inputs (N;) or the
number of outputs (N,), assuming that one or the other is larger based upon test method, some nomenclature conventions
are required for ease of further discussion. In terms of the modal parameter estimation algorithms, it is more important to
recognize whether the algorithm develops the solution on the basis of the larger (Np.) of N; or Ny, or the smaller (Ng ) of N;
or N, dimension of the experimental data. For this reason, the terminology of long (larger of N; or N,) dimension or short
(smaller of N; or N,,) dimension is easier to understand without confusion.
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Therefore, the nomenclature of the number of outputs (N,) and number of inputs (N;) has been replaced by the length of
the long dimension of the data matrix (Ni.) and the length of the short dimension (Ns) regardless of which dimension refers
to the physical output or input. This means that the above reciprocity relationship can be restated as:

[H (@), xng = H@)] ., (1.2)

Note that the reciprocity relationships embedded in Eqs. 1.1 and 1.2 are a function of the common degrees of freedom
(DOFs) in the short and long dimensions. If there are no common DOFs, there are no reciprocity relationships and the
data requirement for modern modal parameter estimation algorithms (multiple references) will not be met. Nevertheless, the
importance of Eqs. 1.1 and 1.2 is that the dimensions of the FRF matrix can be transposed as needed to fit the requirement
of specific modal parameter estimation algorithms. This impacts the size of the square matrix coefficients in the matrix
coefficient, polynomal equation and the length of the associated modal (base) vector.

1.2.2 Autonomous Modal Parameter Estimation

The interest in automatic modal parameter estimation methods has been documented in the literature since at least the mid
1960s when the primary modal method was the analog, force appropriation method [1-3]. Following that early work, there
has been a continuing interest in autonomous methods that, in most cases, have been procedures that are formulated based
upon a specific modal parameter estimation algorithm like the Eigensystem Realization Algorithm (ERA), the Polyreference
Time Domain (PTD) algorithm or more recently the Polyreference Least Squares Complex Frequency (PLSCF) algorithm
(which thebasis of the commercial version of the PLSCF, the PolyMAX ® method and the rational fraction polynomial
algorithm with Z-domain generalized frequency (RFP-z)) [8]. A relatively complete list of autonomous and semi-autonomous
procedures that have been reported can be found in a recent paper [4].

Each of these past procedures have shown some promise but have not yet been widely adopted. In many cases, the
procedure focused on a single modal parameter estimation algorithm and did not develop a general procedure. Most of the
past procedural methods focused on modal frequency (pole) density but depended on limited modal vector data to identify
correlated solutions. Currently, due to increased computational speed and availability of memory, procedural methods can
be developed that were beyond the computational scope of available hardware only a few years ago. These methods do not
require any initial thresholding of the solution sets and rely upon correlation of the vector space of hundreds or thousands of
potential solutions as the primary identification tool.

The discussion in the following sections of the use of multiple modal parameter estimation algorithms in autonomous
modal parameter estimation is based upon recent implementation and experience with an autonomous modal parameter
estimation procedure referred to as the Common Statistical Subspace Autonomous Mode Identification (CSSAMI) method.
The strategy of the CSSAMI autonomous method is to use a default set of parameters and thresholds to allow for all possible
solutions from a given data set. This strategy allows for some poor estimates to be identified as well as the good estimates.
The philosophy of this approach is that it is easier for the user to evaluate and eliminate poor estimates compared to trying to
find additional solutions. The reader is directed to a series of previous papers in order to get an overview of the methodology
and to view application results for several cases [4-7].

Note that much of the background of the CSSAMI method is based upon the Unified Matrix Polynomial Algorithm
(UMPA) [8]. This means that this method can be applied to both low and high order methods with short or long dimension
modal (base) vectors. This also means that most commercial algorithms could take advantage of this procedure. Note that
high order, matrix coefficient polynomials normally have coefficient matrices of a dimension that is based upon the short
dimension of the data matrix, Ng. In these cases, it may be useful to solve for the complete, unscaled or scaled, modal
vector of the large dimension, Ni.. This will extend the temporal-spatial information in the modal (base) vector so that the
vector will be more sensitive to change. This characteristic is what gives the CSSAMI autonomous method a robust ability
to distinguish between computational and structural modal parameters.

1.2.3 Pole Weighted Modal Vectors

The key to estimating the modal parameters utilizing the CSSAMI autonomous procedure is formulating clusters of pole
weighted modal vectors, or state vectors, from the estimates of modal parameters that are represented in a consistency
diagram. These state vectors are formed from the modal vector estimates found as the consistency diagram is developed.
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Fig. 1.1 Eighth order,
pole-weighted vector (state
vector) example
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When comparing modal (base) vectors, at either the short or the long dimension, a pole weighted vector can be constructed
independent of the original algorithm used to estimate the poles and modal (base) vectors. For a given order k of the pole
weighted vector, the modal (base) vector and the associated pole can be used to formulate the pole weighted vector as follows:

Ay, ),
(¢}, = . {oh=1 . (1.3)
PN 24y},
Ay, Z ¥},
A4y, ) 24y,

While the above formulation (on the left) is possible, this form would be dominated by the high order terms if actual
frequency units are utilized. Generalized frequency concepts (frequency normalization or Z domain mapping) are normally
used to minimize this issue by using the Z domain form (z, ) of the complex modal frequency (A;) as shown above (on the
right). The Z domain form of the complex natural frequency is developed as follows:

I e”*(lr/Qm;nx) (I 4)
Z:n — em*ﬂ'*(/\r/szm:u) ( I.S)

In the above equations, £, can be chosen as needed to cause the positive and negative roots to wrap around the unit
circle in the Z domain without overlapping (aliasing). Normally, €2, is taken to be five percent larger than the largest
frequency (absolute value of the complex frequency) identified in the roots of the matrix coefficient polynomial.

Figures 1.1 and 1.2 are graphical representations of the pole weighted vector (state vector) defined in Eq. 1.3. In this
example, the modal (base) vector (at the bottom of Fig. 1.1) is a real-valued normal mode that looks like one period of a
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Fig. 1.2 Eighth order, 1
pole-weighted vector (state \ )
vector) example—Top view

0.6F

0.4

0.2

Imag
o

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
Real

sine wave. The successive higher orders. up to order eight, are shown in different colors moving up the vertical axis of this
figure. The effect of scaling of the modal (base) vector by the higher powers of the Z domain frequency value causes the
base vector to rotate in the real and imaginary space. Figure 1.2 shows the rotation affect clearly. Note that the choice of the
order (k) of the pole weighted vector, therefore, just generates additional length and rotation in the pole weighted vector and
gives varying sensitivity to comparisons between estimates. Futhermore, note that the choice of order (k) is independent of
algorithm. State vectors are a natural part of the numerical formulation for all modal parameter estimation algorithms but
this pole weighted vector (state vector), which looks similar, can be formed independently once the modal (base) vector is
estimated and, thus, is not constrained by the algorithm. The choice of the order of the pole weighted vector (k) will depend
upon the length of the modal (base) vector and is under continuing study at present.

Since the magnitude of the Z domain frequency value is unity, there is no magnitude weighting involved. This rotation
gives a method for a single vector to represent the modal (base) vector shape together with the complex-valued frequency.
With respect to sorting and separating modal vectors that have similar shapes but different frequencies or similar frequencies
but different modal vector shapes, this becomes a powerful parameter, together with modal vector correlation tools like the
modal assurance criterion (MAC), for modal parameter estimation and for autonomous modal parameter estimation.

1.3 Multi-algorithm, Extended Consistency Diagrams

Consistency diagrams, historically called stability diagrams, have almost always been utilized and developed for a specific
modal parameter estimation algorithm. As such the numerical implementation can be different as a function of basis
dimension (Ng or N.), model order and/or subspace iteration. This would make it very hard to combine different algorithms
into a single consistency diagram. However. every algorithm, at the point of the numerical implementation of the consistency
diagram, has multiple sets of complex modal frequency and complex-valued modal vectors. The modal vectors may be of
different length (Ng or Ny ) as a function of algorithm. This potential mismatch in modal (base) vector length can be solved
by restricting the long dimension to the DOFs of the short dimension or, more preferably, adding an extra step in the solution
procedure to estimate the missing portion of the long dimension vectors, extending them from the short dimension DOFs to
the long dimension DOFs. The latter approach is used in the following two figures as an example of extended consistency
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Consistency Diagram
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Fig. 1.3 Extended consistency diagram—Conventional version

diagrams based upon multiple modal parameter estimation algorithms. In these examples, the results from the individual
algorithms are simply stacked into the extended consistency diagram with common sorting and evaluation settings. It should
be noted that the order of the stacking of the different algorithms will affect the look of the consistency diagram but the
CSSAMI autonomous procedure uses all of the estimated parameters and pays no attention to the sequential ordering and
stability calculation involved in the consistency diagram.

The data used for this, and all following examples in this paper, is FRF data taken from an impact test of a steel disc
supported in a pseudo free-free boundary condition. The steel disc is approximately 2 ¢cm. thick and 86 cm. in diameter
with several small holes through the disc. The center area of the disc (diameter of approximately 25 ¢m.) has a thickness of
approximately 6 cm. There are seven reference accelerometers and measured force inputs from an impact hammer are applied
to thirty-six locations, including next to the seven reference accelerometers. The frequency resolution of the data is 5 Hz.
While the disc is not as challenging as some industrial data situations that contain more noise or other complicating factors
like small nonlinearities, the disc has a number of pseudo-repeated roots spaced well within the 5 Hz frequency resolution
and a mix of close modes involving repeated and non-repeated roots which are very challenging. Based upon the construction
of the disc, real-valued, normal modes can be expected and the inability to resolve these modes can be instructive relative
to both modal parameter estimation algorithm and autonomous procedure performance. For the interested reader, a number
of realistic examples are shown in other past papers including FRF data from an automotive structure and a bridge structure
[4,7].

Figure 1.3 is an example of using a conventional, sequential sorting procedure involving criteria for frequency, damping
and modal vector consistency.

Figure 1.4 is an example using a pole weighted vector (state vector) method of producing a similar consistency diagram.
In this example, every estimate from every matrix coefficient polynomial solution from every algorithm is converted into a
pole weighted vector of a specific order, in this case tenth order. Then, the consistency diagram is developed by using vector
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Consistency Diagram
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Fig. 1.4 Extended consistency diagram—Pole weighted MAC version

correlation methods (MAC) to identify consistency. A similar set of symbols, as those used in Fig. 1.3, are used to define
increased levels of consistency as numerical solutions are added.

Both methods work very well but the implementation of Fig. 1.4 is computationally easier and not subject to a frequency
drift in the symbol path that can occur in the conventional implementation shown in Fig. 1.1. Note that the solid square
symbols at the top of both consistency diagrams represent the solution found from the CSSAMI autonomous modal parameter
estimation procedure applied to the information represented by each consistency diagram.

Note that all of the above algorithms are using the same matrix polynomial equation normalization procedure which
tends to yield clear consistency diagrams. Each consistency diagram can yield twice as many estimates of the desired modal
parameters if both low and high matrix coefficient normalizations are utilized. This is also under current study.

1.4 Autonomous Modal Parameter Estimation with Extended Consistency Diagrams

The CSSAMI autonomous procedure utilizes all solutions indicated by a symbol in the consistency diagram. If some symbols
are not present, it means the user has decided not to view solutions identified by those symbols. This provides a way to remove
solutions from the autonomous procedure that are clearly not reasonable. However, experience with the CSSAMI autonomous
procedure has shown that some solutions that are often eliminated by users in an attempt to have a clear consistency diagram
are often statistically consistent and useful.

Figure 1.5 shows the solutions that are included in the autonomous procedure. The graphical representation on the
left represents a MAC matrix involving the pole weighted vectors for all possible solutions from Fig. 1.3. The graphical
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Fig. 1.5 Pole weighted MAC of all consistency diagram solutions—Before and after threshold applied

representation on the right represents the pole weighted vectors that remain after threshold and cluster size limitations are
imposed. Each cluster that remains is evaluated, cluster by cluster, independently to estimate the best modal frequency and
modal vector from that cluster. Note that both the positive frequency and negative frequency (complex conjugate) roots are
included and identified separately as clusters. Figure 1.5 represents nearly 1,000 solution estimates spanning four different
algorithms and 19 different solutions form each algorithm.

Once the final set of modal parameters, along with their associated statistics, is obtained, quality can be assessed
by many methods that have been used in the past. The most common example is to perform comparisons between the
original measurements and measurements synthesized from the modal parameters. Another common example is to look at
physical characteristics of the identified parameters such as reasonableness of frequency and damping values, normal mode
characteristics in the modal vectors, and appropriate magnitude and phasing in the modal scaling. Other evaluations that may
be helpful are unweighted and weighted modal assurance criterion (MAC) evaluation of the independence of the complete
modal vector set, mean phase correlation (MPC) of each vector or any other method available. Naturally, since a significant

number of pole weighted vectors are used in a cluster to identify the final modal parameters, traditional statistics involving
mean and standard deviation are now available.

1.5 Summary and Future Work

With the advent of more computationally powerful computers and sufficient memory, it has become practical to evaluate
sets of solutions involving hundreds or thousands of modal parameter estimates and to extract the common information
from those sets. If multiple modal parameter estimation algorithms can be combined into a single autonomous procedure,
the statistics related to the common modal parameter estimation become even more meaningful. In most experimental cases
studied so far, autonomous procedures give very acceptable results, in some cases superior results, in a fraction of the time
required for an experienced user to get the same result.

Future work will involve evaluating alternate numerical methods for combining algorithms into a single consistency
diagram (equation normalization, order of the pole weighted vector, etc.) and as well as modal vector solution methods for
identifying the best causal results (Do we get a normal mode when we expect a normal mode?). Numerical solution methods
that identify both real-valued modal vectors (normal modes) and complex-valued modal vectors, when appropriate, would
be truly autonomous.

However, it is important to reiterate that the use of these autonomous procedures or wizard tools by users with limited

experience is probably not yet appropriate. Such tools are most appropriately used by users with the experience to accurately
judge the quality of the parameter solutions identified.
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