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Preface

My primary goal in writing Understanding Analysis was to create an elemen-
tary one-semester book that exposes students to the rich rewards inherent in
taking a mathematically rigorous approach to the study of functions of a real
variable. The aim of a course in real analysis should be to challenge and im-
prove mathematical intuition rather than to verify it. There is a tendency,
however, to center an introductory course too closely around the familiar the-
orems of the standard calculus sequence. Producing a rigorous argument that
polynomials are continuous is good evidence for a well-chosen definition of con-
tinuity, but it is not the reason the subject was created and certainly not the
reason it should be required study. By shifting the focus to topics where an
untrained intuition is severely disadvantaged (e.g., rearrangements of infinite
series, nowhere-differentiable continuous functions, Fourier series), my intent
is to restore an intellectual liveliness to this course by offering the beginning
student access to some truly significant achievements of the subject.

The Main Objectives

In recent years, the standard undergraduate curriculum in mathematics has
been subjected to steady pressure from several different sources. As computers
and technology become more ubiquitous, so do the areas where mathematical
thinking can be a valuable asset. Rather than preparing themselves for graduate
study in pure mathematics, the present majority of mathematics majors look
forward to careers in banking, medicine, law, and numerous other fields where
analytical skills are desirable. Another strong influence on college mathemat-
ics is the ongoing calculus reform effort, now well over ten years old. At the
core of this movement is the justifiable goal of presenting calculus in a more
intuitive way, emphasizing geometric arguments over symbolic ones. Despite
these various trends—or perhaps because of them—nearly every undergraduate
mathematics program continues to require at least one semester of real analysis.
The result is that instructors today are faced with the task of teaching a diffi-
cult, abstract course to a more diverse audience less familiar with the nature of
axiomatic arguments.

The crux of the matter is that any prevailing sentiment in favor of marketing
mathematics to larger groups must at some point be reconciled with the fact
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vi Preface

that theoretical analysis is extremely challenging and even intimidating for some.
One unfortunate resolution of this dilemma has been to make the course easier
by making it less interesting. The omitted material is inevitably what gives
analysis its true flavor. A better solution is to find a way to make the more
advanced topics accessible and worth the effort.

I see three essential goals that a semester of real analysis should try to meet:

1. Students, especially those emerging from a reform approach to calculus,
need to be convinced of the need for a more rigorous study of functions.
The necessity of precise definitions and an axiomatic approach must be
carefully motivated.

2. Having seen mainly graphical, numerical, or intuitive arguments, students
need to learn what constitutes a rigorous mathematical proof and how to
write one.

3. There needs to be significant reward for the difficult work of firming up the
logical structure of limits. Specifically, real analysis should not be just an
elaborate reworking of standard introductory calculus. Students should
be exposed to the tantalizing complexities of the real line, to the subtleties
of different flavors of convergence, and to the intellectual delights hidden
in the paradoxes of the infinite.

The philosophy of Understanding Analysis is to focus attention on questions
that give analysis its inherent fascination. Does the Cantor set contain any
irrational numbers? Can the set of points where a function is discontinuous
be arbitrary? Are derivatives continucus? Are derivatives integrable? Is an
infinitely differentiable function necessarily the limit of its Taylor series? In
giving these topics center stage, the hard work of a rigorous study is justified
by the fact that they are inaccessible without it.

The Structure of the Book

This book is an introductory text. Although some fairly sophisticated topics
are brought in early to advertise and motivate the upcoming material, the main
body of each chapter consists of a lean and focused treatment of the core top-
ics that make up the center of most coursés in analysis. Fundamental results
about completeness, compactness, sequential and functional limits, continuity,
uniform convergence, differentiation, and integration are all incorporated. What
is specific here is where the emphasis is placed. In the chapter on integration,
for instance, the exposition revolves around deciphering the relationship be-
tween continuity and the Riemann integral. Enough properties of the integral
are obtained to justify a proof of the Fundamental Theorem of Calculus, but
the theme of the chapter is the pursuit of a characterization of integrable func-
tions in terms of continuity. Whether or not Lebesgue’s measure-zero criterion
is treated, framing the material in this way is still valuable because it is the
questions that are important. Mathematics is not a static discipline. Students
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should be aware of the historical reasons for the creation of the mathematics
they are learning and by extension realize that there is no last word on the
subject. In the case of integration, this point is made explicitly by including
some relatively recent developments on the generalized Riemann integral in the
additional topics of the last chapter.

The structure of the chapters has the following distinctive features.

Discussion Sections: Each chapter begins with the discussion of some mo-
tivating examples and open questions. The tone in these discussions is inten-
tionally informal, and full use is made of familiar functions and results from
calculus. The idea is to freely explore the terrain, providing context for the
upcoming definitions and theorems. A recurring theme is the resolution of the
paradoxes that arise when operations that work well in finite settings are naively
extended to infinite settings (e.g., differentiating an infinite series term-by-term,
reversing the order of a double summation). After these exploratory introduc-
tions, the tone of the writing changes, and the treatment becomes rigorously
tight but still not overly formal. With the questions in place, the need for the
ensuing development of the material is well-motivated and the payoff is in sight.

Project Sections: The penultimate section of each chapter (the final section is
a short epilogue) is written with the exercises incorporated into the exposition.
Proofs are outlined but not completed, and additional exercises are included
to elucidate the material being discussed. The point of this is to provide some
flexibility. The sections are written as self-guided tutorials, but they can also
be the subject of lectures. I have used them in place of a final examination,
and they work especially well as collaborative assignments that can culminate
in a class presentation. The body of each chapter contains the necessary tools,
so there is some satisfaction in letting the students use their newly acquired
skills to ferret out for themselves answers to questions that have been driving
the exposition.

Building a Course

Teaching a satisfying class inevitably involves a race against time. Although
this book is designed for a 12-14 week semester, there are still a few choices to
make as to what to cover.

® The introductions can be discussed, assigned as reading, omitted, or sub-
stituted with something preferable. There are no theorems proved here
that show up later in the text. I do develop some important examples in
these introductions (the Cantor set, Dirichlet’s nowhere-continuous func-
tion) that probably need to find their way into discussions at some point.

e Chapter 3, Basic Topology of R, is much longer than it needs to be. All
that is required by the ensuing chapters are fundamental results about
open ‘and closed sets and a thorough understanding of sequential com-
pactness. The characterization of compactness using open covers as well
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as the section on perfect and connected sets are included for their own in-
trinsic interest. They are not, however, crucial to any future proofs. The
one exception to this is a presentation of the Intermediate Value Theorem
(IVT) as a special case of the preservation of connected sets by continu-
ous functions. To keep connectedness truly optional, I have included two
direct proofs of IVT, one using least upper bounds and the other using -
nested intervals. A similar comment can be made about perfect sets. Al-
though proofs of the Baire Category Theorem are nicely motivated by the
argument that perfect sets are uncountable, it is certainly possible to do
one without the other.

e All the project sections (1.5, 2.8, 3.5, 4.6, 5.4, 6.6, 7.6, 8.1-8.4) are optional
in the sense that no results in later chapters depend on material in these
sections. The four topics covered in Chapter 8 are also written in this
project-style format, where the exercises make up a significant part of the
development. The only one of these sections that might require a lecture
is the unit on Fourier series, which is a bit longer than the others.

The Audience

The only prerequisite for this course is a robust understanding of the results
from single-variable calculus. The theorems of linear algebra are not needed,
but the exposure to abstract arguments and proof writing that usually comes
with this course would be a valuable asset. Complex numbers are never used in
this book.

The proofs in Understanding Analysis are written with the introductory
student firmly in mind. Brevity and other stylistic concerns are postponed in
favor of including a significant level of detail. Most proofs come with a fair
amount of discussion about the context of the argument. What should the
proof entail? Which definitions are relevant? What is the overall strategy?
Is one particular proof similar to something already done? Whenever there is
a choice, efficiency is traded for an opportunity to reinforce some previously
learned technique. Especially familiar or predictable arguments are usually
sketched as exercises so that students can participate directly in the development
of the core material.

The search for recurring ideas exists at the proof-writing level and also on
the larger expository level. I have tried to give the course a narrative tone by
picking up on the unifying themes of approximation and the transition from the
finite to the infinite. To paraphrase a passage from the end of the baok, real
numbers are approximated by rational ones; values of continuous functions are
approximated by values nearby; curves are approximated by straight lines; areas
are approximated by sums of rectangles; continuous functions are approximated
by polynomials. In each case, the approximating objects are tangible and well-
understood, and the issue is when and how well these qualities survive the
limiting process. By focusing on this recurring pattern, each successive topic
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builds on the intuition of the previous one. The questions seem more natural,
and a method to the madness emerges from what might otherwise appear as a
long list of theorems and proofs.

This book always emphasizes core ideas over generality, and it makes no
effort to be a complete, deductive catalog of results. It is designed to capture the
intellectual imagination. Those who become interested are then exceptionally
well prepared for a second course starting from complex-valued functions on
more general spaces, while those content with a single semester come away with
a strong sense of the essence and purpose of real analysis. Turning once more
to the concluding passages of Chapter 8, “By viewing the different infinities of
mathematics through pathways crafted out of finite objects, Weierstrass and
the other founders of analysis created a paradigm for how to extend the scope
of mathematical exploration deep into territory previously unattainable.”

This exploration has constituted the major thrill of my intellectual life. I
am extremely pleased to offer this guide to what I feel are some of the most
impressive highlights of the journey. Have a wonderful trip!
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Chapter 1

The Real Numbers

1.1 Discussion: The Irrationality of v/2

Toward the end of his distinguished career, the renowned British mathematician
G.H. Hardy eloquently laid out a justification for a life of studying mathematics
in A Mathematician’s Apology, an essay first published in 1940. At the center
of Hardy’s defense is the thesis that mathematics is an aesthetic discipline. For
Hardy, the applied mathematics of engineers and economists held little charm.
“Real mathematics,” as he referred to it, “must be justified as art if it can be
justified at all.”

To help make his point, Hardy includes two theorems from classical Greek
mathematics, which, in his opinion, possess an elusive kind of beauty that,
although difficult to define, is easy to recognize. The first of these results is
Euclid’s proof that there are an infinite number of prime numbers. The second
result is the discovery, attributed to the school of Pythagoras from around 500
B.C., that +/2 is irrational. It is this second theorem that demands our attention.
(A course in number theory would focus on the first.) The argument uses only
arithmetic, but its depth and importance cannot be overstated. As Hardy says,
“[It] is a ‘simple’ theorem, simple both in idea and execution, but there is no
doubt at all about [it being] of the highest class. {It] is as fresh and significant
as when it was discovered—two thousand years have not written a wrinkle on
(it].”

Theorem 1.1.1. There is no rational number whose square is 2.

Proof. A rational number is any number that can be expressed in the form p/q,
where p and ¢ are integers. Thus, what the theorem asserts is that no matter
how p and g are chosen, it is never the case that (p/q)2 = 2. The line of attack
is indirect, using a type of argument referred to as a proof by contradiction.
The idea is to assume that there is a rational number whose square is 2 and
then proceed along logical lines until we reach a conclusion that is unacceptable.
At this point, we will be forced to retrace our steps and reject the erroneous

1



2 Chapter 1. The Real Numbers

assumption that some rational number squared is equal to 2. In short, we will
prove that the theorem is true by demonstrating that it cannot be false.
And so assume, for contradiction, that there exist integers p and q satisfying

(1) (5)2 =2

We may also assume that p and ¢ have no common factor, because, if they had
one, we could simply cancel it out and rewrite the fraction in lowest terms. Now,
equation (1) implies

(2) p* =2¢%

From this, we can see that the integer p? is an even number (it is divisible by
2), and hence p must be even as well because the square of an odd number is
odd. This allows us to write p = 2r, where r is also an integer. If we substitute
2r for p in equation (2), then a little algebra yields the relationship

2r? = g2

But now the absurdity is at hand. This last equation implies that g% is even,
and hence g must also be even. Thus, we have shown that p and g are both
even (i.e., divisible by 2) when they were originally assumed to have no common
factor. From this logical impasse, we can only conclude that equation (1) cannot
hold for any integers p and ¢, and thus the theorem is proved. O

A component of Hardy’s definition of beauty in a mathematical theorem
is that the result have lasting and serious implications for a network of other
mathematical ideas. In this case, the ideas under assault were the Greeks’ un-
derstanding of the relationship between geometric length and arithmetic number.
Prior to the preceding discovery, it was an assumed and commonly used fact
that, given two line segments AB and CD, it would always be possible to find
a third line segment whose length divides evenly into the first two. In modern
terminology, this is equivalent to asserting that the length of CD is a rational
multiple of the length of AB. Looking at the diagonal of a unit square (Fig.
1.1), it now followed (using the Pythagorean Theorem) that this was not always
the case. Because the Pythagoreans implicitly interpreted number to mean ra-
tional number, they were forced to accept that number was a strictly weaker
notion than length.

Rather than abandoning arithmetic in favor of geometry (as the Greeks seem
to have done), our resolution to this limitation is to strengthen the concept of
number by moving from the rational numbers to a larger number system. From
a modern point of view, this should seem like a familiar and somewhat natural
phenomenon. We begin with the natural numbers

N ={1,2,3,4,5,...}.

The influential German mathematician Leopold Kronecker (1823-1891) once
asserted that “The natural numbers are the work of God. All of the rest is
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Figure 1.1: v/2 EXISTS AS A GEOMETRIC LENGTH.

the work of mankind.” Debating the validity of this claim is an interesting
conversation for another time. For the moment, it at least provides us with
a place to start. If we restrict our attention to the natural numbers N, then
we can perform addition perfectly well, but we must extend our system to the
integers

Z={..,-3-2-1,0123,...}

if we want tohave an additive identity (zero) and the additive inverses necessary
to define subtraction. The next issue is multiplication and division. The number
1 acts as the multiplicative identity, but in order to define division we need to
have multiplicative inverses. Thus, we extend our system again to the rational
numbers

Q= {all fractions g where p and g are integers with g # 0} .

Taken together, the properties of Q discussed in the previous paragraph
essentially make up the definition of what is called a field. More formally stated,
a field is any set where addition and multiplication are well-defined operations
that are commutative, associative, and obey the familiar distributive property
a(b+ c) = ab+ ac. There must be an additive identity, and every element must
have an additive inverse. Finally, there must be a multiplicative identity, and
multiplicative inverses must exist for all nonzero elements of the field. Neither
Z nor N is a field. The finite set {0,1,2,3,4} is a field when addition and
multiplication are computed modulo 5. This is not immediately obvious but
makes an interesting exercise (Exercise 1.3.1).

The set Q also has a natural order defined on it. Given any two rational
numbers r and s, exactly one of the following is true:

r<s, r=s O T>8.

This ordering is transitive in the sense that if r < s and s < ¢, then r < ¢, so
we are conveniently led to a mental picture of the rational numbers as being
laid out from left to right along a number line. Unlike Z, there are no intervals
of empty space. Given any two rational numbers r < s, the rational number
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V2
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1.414

Figure 1.2: APPROXIMATING V2 WITH RATIONAL NUMBERS.

(r+s)/2 sits halfway in between, implying that the rational numbers are densely
nestled together.

With the field properties of Q allowing us to safely carry out the algebraic
operations of addition, subtraction, multiplication, and division, let’s remind
ourselves just what it is that Q is lacking. By Theorem 1.1.1, it is apparent
that we cannot always take square roots. The problem, however, is actually
more fundamental than this. Using only rational numbers, it is possible to
approzimate /2 quite well (Fig. 1.2). For instance, 1.414% = 1.999396. By
adding more decimal places to our approximation, we can get even closer to
a value for /2, but, even so, we are now well aware that there is & “hole” in
the rational number line where V2 ought to be. Of course, there are quite a
few other holes—at v/3 and /5, for example. Returning to the dilemma of the
ancient Greek mathematicians, if we want every length along the number line to
correspond to an actual number, then another extension to our number system
is in order. Thus, to the chain N C Z C Q we append the real numbers R.

The question of how to actually construct R from Q is rather complicated
business. It is discussed in Section 1.3, and then again in more detail in Section
8.4. For the moment, it is not too inaccurate to say that R is obtained by
filling in the gaps in Q. Wherever there is a hole, a new irrational number is
defined and placed into the ordering that already exists on Q. The real numbers
are then the union of these irrational numbers together with the more familiar
rational ones. What properties does the set of irrational numbers have? How
do the sets of rational and irrational numbers fit together? Is there a kind
of symmetry between the rationals and the irrationals, or is there some sense
in which we can argue that one type of real number is more common than the
other? The one method we have seen so far for generating examples of irrational
numbers is through square roots. Not too surprisingly, other roots such as /2
or v/3 are most often irrational. Can all irrational numbers be expressed as
algebraic combinations of nth roots and rational numbers, or are there still
other irrational numbers beyond those of this form?

1.2 Some Preliminaries

The vocabulary necessary for the ensuing development comes from set theory
and the theory of functions. This should be familiar territory, but a brief review
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of the terminology is probably a good idea, if only to establish some agreed-upon
notation.

Sets

Intuitively speaking, a set is any collection of objects. These objects are referred
to as the elements of the set. For our purposes, the sets in question will most
often be sets of real numbers, although we will also encounter sets of functions
and, on a few rare occasions, sets whose elements are other sets.

Given a set A, we write £ € A if z (whatever it may be) is an element of A.
If z is not an element of A, then we write z ¢ A. Given two sets A and B, the
union is written A U B and is defined by asserting that

z € AU B provided that z € A or z € B (or potentially both).
The intersection AN B is the set defined by the rule
z€ AN B provided z € A and z € B.

Example 1.2.1. (i) There are many acceptable ways to assert the contents of
a set. In the previous section, the set of natural numbers was defined by listing
the elements: N = {1,2,3,...}.

(ii) Sets can also be described in words. For instance, we can define the set
E to be the collection of even natural numbers.

(iii) Sometimes it is more efficient to provide a kind of rule or algorithm for
determining the elements of a set. As an example, let

S={reqQ:r? <2}

Read aloud, the definition of S says, “Let S be the set of all rational numbers
whose squares are less than 2.” It follows that 1 € S, 4/3 € S, but 3/2¢ S
because 9/4 > 2.

Using the previously defined sets to illustrate the operations of intersection
and union, we observe that

NUE=N, NNE=E, NnNnS={1}, and ENS=0.

The set @ is called the empty set and is understood to be the set that contains no
elements. An equivalent statement would be to say that E and S are disjoint.

A word about the equality of two sets is in order (since we have just used
the notion). The inclusion relationship A C B or B D A is used to indicate that
every element of A is also an element of B. In this case, we say A is a subset of
B, or B contains A. To assert that A = B means that A C B and B C A. Put
another way, A and B have exactly the same elements.

Quite frequently in the upcoming chapters, we will want to apply the union
and intersection operations to infinite collections of sets. -
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Example 1.2.2. Let

A, = N={1,2,3,...},
A, = {2,3,4,...},
A = {3,4,5,...},

and, in general, for each n € N, define the set
Ap={n,n+1,n+2,...}.
The result is a nested chain of sets
A1 DA2D2A32 442,

where each successive set is a subset of all the previous ones. Notationally,

GAm J 4n, or Ay UAUAsU--

n=1 neN

are all equivalent ways to indicate the set whose elements consist of any element
that appears in at least one particular A,. Because of the nested property of
this particular collection of sets, it is not too hard to see that

The notion of intersection has the same kind of natural extension to infinite
collections of sets. For this example, we have

() A =0.
n=1

Let’s be sure we understand why this is the case. Suppose we had some natural
number m that we thought might actually satisfy m € oo, A,. What this
would mean is that m € A, for every A, in our collection of sets. Because m is
not an element of A4,,,1, no such m exists and the intersection is empty.

As mentioned, most of the sets we encounter will be sets of real numbers.
Given A C R, the complement of A, written A€, refers to the set of all elements
of R not in A. Thus, for A C R,

A={zeR:z ¢ A}.

A few times in our work to come, we will refer to De Morgan’s Laws, which
state that
(ANBY=A°UB° and (AUB)*= A°NB°

Proofs of these statements are discussed in Exercise 1.2.3.



