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Preface

The term “weakly differentiable functions” in the title refers to those inte-
grable functions defined on an open subset of R® whose partial derivatives
in the sense of distributions are either L? functions or (signed) measures
with finite total variation. The former class of functions comprises what
is now known as Sobolev spaces, though its origin, traceable to the early
1900s, predates the contributions by Sobolev. Both classes of functions,
Sobolev spaces and the space of functions of bounded variation (BV func-
tions), have undergone considerable development during the past 20 years.
From this development a rather complete theory has emerged and thus has
provided the main impetus for the writing of this book. Since these classes
of functions play a significant role in many fields, such as approximation
theory, calculus of variations, partial differential equations, and non-linear
potential theory, it is hoped that this monograph will be of assistance to a
wide range of graduate students and researchers in these and perhaps other
related areas. Some of the material in Chapters 1-4 has been presented in
a graduate course at Indiana University during the 1987-88 academic year,
and I am indebted to the students and colleagues in attendance for their
helpful comments and suggestions.

The major thrust of this book is the analysis of pointwise behavior of
Sobolev and BV functions. I have not attempted to develop Sobolev spaces
of fractional order which can be described in terms of Bessel potentials,
since this would require an effort beyond the scope of this book. Instead,
I concentrate on the analysis of spaces of integer order which is largely
accessible through real variable techniques, but does not totally exclude
the use of Bessel potentials. Indeed, the investigation of pointwise behavior
requires an analysis of certain exceptional sets and they can be conveniently
described in terms of elementary aspects of Bessel capacity.

The only prerequisite for the present volume is a standard graduate
course in real analysis, drawing especially from Lebesgue point theory and
measure theory. The material is organized in the following manner. Chap-
ter 1 is devoted to a review of those topics in real analysis that are needed
in the sequel. Included here is a brief overview of Lebesgue measure, L?
spaces, Hausdorff measure, and Schwartz distributions. Also included are
sections on covering theorems and Lorentz spaces—the latter being neces-
sary for a treatment of Sobolev inequalities in the case of critical indices.
Chapter 2 develops the basic properties of Sobolev spaces such as equiva-
lent formulations of Sobolev functions and their behavior under the opera-
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tions of truncation, composition, and change of variables. Also included is a
proof of the Sobolev inequality in its simplest form and the related Rellich-
Kondrachov Compactness Theorem. Alternate proofs of the Sobolev in-
equality are given, including the one which relates it to the isoperimetric
inequality and provides the best constant. Limiting cases of the Sobolev
inequality are discussed in the context of Lorentz spaces.

The remaining chapters are central to the book. Chapter 3 develops the
analysis of pointwise behavior of Sobolev functions. This includes a dis-
cussion of the continuity properties of functions with first derivatives in
L? in terms of Lebesgue points, approximate continuity, and fine conti-
nuity, as well as an analysis of differentiability properties of higher order
Sobolev functions by means of LP-derivatives. Here lies the foundation for
more delicate results, such as the comparison of LP-derivatives and dis-
tributional derivatives, and a result which provides an approximation for
Sobolev functions by smooth functions (in norm) that agree with the given
function everywhere except on sets whose complements have small capacity.

Chapter 4 develops an idea due to Norman Meyers. He observed that
the usual indirect proof of the Poincaré inequality could be used to es-
tablish a Poincaré-type inequality in an abstract setting. By appropriately
interpreting this inequality in various contexts, it yields virtually all known
inequalities of this genre. This general inequality contains a term which in-
volves an element of the dual of a Sobolev space. For many applications,
this term is taken as a measure; it therefore is of interest to know precisely
the class of measures contained in the dual of a given Sobolev space. For-
tunately, the Hedberg-Wolff theorem provides a characterization of such
measures.

The last chapter provides an analysis of the pointwise behavior of BV
functions in a manner that runs parallel to the development of Lebesgue
point theory for Sobolev functions in Chapter 3. While the Lebesgue point
theory for Sobolev functions is relatively easy to penetrate, the corre-
sponding development for BV functions is much more demanding. The
intricate nature of BV functions requires a more involved exposition than
does Sobolev functions, but at the same time reveals a rich and beautiful
structure which has its foundations in geometric measure theory. After the
structure of BV functions has been developed, Chapter 5 returns to the
analysis of Poincaré inequalities for BV functions in the spirit developed
for Sobolev functions, which includes a characterization of measures that
belong to the dual of BV.

In order to place the text in better perspective, each chapter is con-
cluded with a section on historical notes which includes references to all
important and relatively new results. In addition to cited works, the Bib-
liography contains many other references related to the material in the
text. Bibliographical references are abbreviated in square brackets, such as
{DL). Equation numbers appear in parentheses; theorems, lemmas, corollar-
ies,and remarks are numbered as a.b.c where b refers to section b in chapter
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a, and section a.b refers to section b in chapter a.

I wish to thank David Adams, Robert Glassey, Tero Kilpeldinen,
Christoph Neugebauer, Edward Stredulinsky, Tevan Trent, and William
K. Ziemer for having critically read parts of the manuscript and supplied
many helpful suggestions and corrections.

WILLIAM P. ZIEMER
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1

Preliminaries

Beyond the topics usually found in basic real analysis, virtually all of the
material found in this work is self-contained. In particular, most of the in-
formation contained in this chapter will be well-known by the reader and
therefore no attempt has been made to make a complete and thorough pre-
sentation. Rather, we merely introduce notation and develop a few concepts
that will be needed in the sequel.

1.1 Notation

Throughout, the symbol Q will generally denote an open set in Euclidean
space R™ and @ will designate the empty set. Points in R are denoted by
z = (zy,...,Zn), where z; € R!,1 < i <n.Ifz,y € R", the inner product

of z and y is .
Ty=) Ty
i=1
and the norm of z is
j2| = (z-2)'/2.
If u: @ — R! is a function defined on (2, the support of u is defined by
sptu=Qn {z:u(z) # 0},

where the closure of a set § C R™ is denoted by 5. If § C €2, S compact
and also S C Q, we shall write § CC . The boundary of a set S is defined
by
88 =5n(R"-9).
For £ C R™ and z € R™, the distance from z to E is
d(z,E) =inf{lz - y|: y € E}.
It is a simple exercise (see Exercise 1.1) to show that
ld(l‘, E) - d(yv E)I < II - y!
whenever z,y € R*. The diameter of a set E C R" is defined by

diam(E) = sup{|z — y| : z,y € E},
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and the characteristic function E is denoted by xg. The symbol
B(z,r)={y: [z -yl <7}

denotes the open ball with center z, radius r and
B(z,r)={y:|z -yl <1}

will stand for the closed ball. We will use a(n) to denote the volume of the
ball of radius 1 in R™. If a = (a,...,an) is an n-tuple of non-negative
integers, a is called a multi-indez and the length of a is

lo| = Z a;.
i=1

Ifz=(xy,...,2,) € R*, we will let

az

z% =z - 23 an

T,

and a! = ajlas!---a,!. The partial derivative operators are denoted by
D; = 38/0z; for 1 <i < n, and the higher order derivatives by

D® = D™ ...pon — 3|0|
- K - I, PE

The gradient of a real-valued function u is denoted by
Du(z) = (Dyu(z),..., Dyu(z)).

If k is a non-negative integer, we will sometimes use D*u to denote the
vector D¥u = {Du})4_y.

We denote by C%(2) the space of continuous functions on §2. More gen-
erally, if k is a non-negative integer, possibly oo, let

CKY) = {u:u:Q— R, DueC'(), 0< la] < k},
CE(Q) = C*Q)n {u : spt u compact, spt u C Q},
and
c*@) = c*n {u: D®u has a continuous extension to 2,0 < |a] < k).

Since Q2 is open, a function u € C*(2) need not be bounded on . However,
if u is bounded and uniformly continuous on 2, then u can be uniquely
extended to a continuous function on £. We will use C* (2; R™) to denote
the class of functions u: 2 — R™ defined on Q whose coordinate functions
belong to C*(). Similar notation is used for other function spaces whose
elements are vector-valued.



