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Preface

This textbook aims at a complete and concise description of the present knowledge
of nuclear and radiochemistry and applications in various fields of the natural
sciences. It is based on teaching courses and research spanning several decades.
The book is mainly addressed to advanced undergraduate students and to graduate
students of chemistry. Students and scientists working in physics, geology, min-
eralogy, biology, medicine, and other fields will also find useful information about
the principles and applications of nuclear and radiochemistry.

Traditionally, nuclear chemistry has been deeply tied to nuclear physics, coop-
eratively called nuclear science. At the same time, a wide field of applications of
nuclear and radiochemistry in other sciences has developed. Therefore, it was
considered important to bring together in one textbook a detailed presentation
of the physical fundamentals as well as applied aspects of nuclear chemistry
ranging from nuclear structure, nuclear masses, nuclear reactions, the produc-
tion of radionuclides and labeled compounds, the chemistry of the radioele-
ments, the study of radionuclides in the environment, all the way to the nuclear
and radiochemistry needed in nuclear technology. Applications also include the
use of radionuclides in analytical chemistry, in geo- and cosmochemistry, dating
by nuclear methods, and the use of radionuclides in the life sciences and
medicine.

For further reading, the relevant literature is listed abundantly at the end of each
chapter. Generally, it is arranged in chronological order, beginning with the litera-
ture of historical relevance, followed by more recent work subdivided according to
the subject matter into general and more specialized aspects.

After the passing of Professor Karl Heinrich Lieser, the younger author
(JVK) was approached by the Lieser family and by the publisher and was
motivated to prepare a generally updated third edition of this textbook. The
concept and structure of the book remain largely unchanged; however, new
developments and results have been incorporated, including the most recent
references. These updates concern the physical properties of atomic nuclei,
the nuclear force and nuclear structure, techniques in nuclear chemistry,
nuclear reactions, statistical considerations in radioactivity measurements, the
actinides and transactinides, radionuclide mass spectrometry, and modern
methods of speciation of radionuclides in the environment. These have been
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Preface

taken from teaching courses held at the Johannes Gutenberg University over
the last 30 years.

It is my pleasure to thank Mrs. Petra Sach-Muth for help with the software
“wiley-vch.dot” and Mr. Jiirgen Hubrath for scanning and impoving a large
number of new figures.

Mainz, April 2012 Jens-Volker Kratz
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1
Fundamental Concepts

Nuclear and radiochemistry cover a wide spectrum of areas such as (i) studies of
the chemical and physical properties of the heaviest human-made elements; (ii)
studies of nuclear structure, nuclear reactions, and radioactive decay, (iii) studies
of nuclear processes in the Universe, such as geochronology and cosmochemistry;
and (iv) applications of radioactivity in a vast variety of fields such as radioanalysis,
chemistry, life sciences, and industrial applications, and in the geo- and biosphere.
Nuclear chemistry has ties to all traditional areas of chemistry. Nuclear chemists
are involved in the preparation of radiopharmaceuticals for use in medicine.
Radiometric techniques play an important role in analytical chemistry and are
often used as references validating other analytical techniques. The study of the
actinide and transactinide elements has traditionally involved nuclear chemists
studying the limits of nuclear stability and the periodicity of the periodic table of
the elements. The physical concepts at the heart of nuclear chemistry have their
roots in nuclear physics. Thus nuclear physics and nuclear chemistry overlap and
are cooperatively called nuclear science. However, there are distinctions between
these related fields. Besides the close ties to chemistry mentioned above, nuclear
chemists are studying nuclear problems in different ways than nuclear physicists.
Nuclear physics tends to look into the fundamental interactions between suba-
tomic particles and fundamental symmetries. Nuclear chemists have focused on
more complex phenomena where statistical properties are important. Nuclear
chemists are more involved in applications of nuclear phenomena. For example,
the nuclear fuel cycle or the migration of radionuclides in the environment are so
inherently chemical that they involve nuclear chemists almost exclusively. The
other term, radiochemistry, refers to the chemical applications of radioactivity and
of related phenomena. Radiochemists are nuclear chemists but not all nuclear
chemists are radiochemists. There are many nuclear chemists who use purely
instrumental, physical techniques for their research and thus their work is not
radiochemistry.

Nuclear and Radiochemistry: Fundamentals and Applications, Third Edition. Jens-Volker Kratz and
Karl Heinrich Lieser.
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2013 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 1.1 Schematic representation of the relative sizes of the atom and the nucleus.

1.1
The Atom

The atom is the smallest unit a chemical element can be divided into without
losing its chemical properties. The radii of atoms are on the order of 107'°m (A).
The atomic nucleus, see Figure 1.1, is a very small object with a radius on the
order of 1-10 - 10" m (femtometer, fm, called fermi) in the center of the atom
and contains almost the entire mass of the atom. It contains Z protons, where Z
is the atomic number of the element. Being the number of protons, Z is thus the
number of positive charges in the nucleus. The nucleus also contains N neutrons,
where N is the neutron number. Neutrons are uncharged particles with masses
almost identical to the proton mass. Electrons surround the nucleus. Electrons are
small negatively charged particles with a mass of 1/1836 of the proton mass. The
electrons are bound electrostatically to the positively charged nucleus. In a neutral
atom, the number of electrons equals the number of protons in the nucleus. The
chemistry of the element is controlled by Z. From quantum mechanics, we know
that only certain discrete energies and angular momenta of the electrons are
allowed. These quantized states are schematically depicted in Figure 1.1. Later, in
Chapter 5, we will see also that nucleons occupy orbits with discrete energies and
angular momenta. However, the sizes and energies of atomic and nuclear pro-
cesses are very different, allowing us to consider them separately.

1.2
Atomic Processes

In the inelastic collision of two atoms, we can anticipate (i) excitation of one or
both atoms involving a change in electron configuration; or (ii) ionization of one
or both atoms, that is, removal of one or more electrons from the atom to form a
positively charged ion. For this process to occur, an atomic electron must receive
an energy exceeding its binding energy. This energy far exceeds the kinetic ener-
gies of gaseous atoms at room temperature. Thus, the atoms must have high
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K X-ray

emission

Figure 1.2 Scheme showing X-ray emission when a vacancy in an inner electron shell caused
by nuclear decay is filled. An L-shell electron is shown filling a K-shell vacancy associated with
K X-ray emission.

kinetic energies as a result of nuclear decay or acceleration to eject electrons from
other atoms in atomic collisions. When an electron in an outer atomic electron
shell drops down to fill a vacancy in an inner electron shell, electromagnetic radia-
tion called X-rays is emitted. In Figure 1.2, an L-shell electron is shown filling a
K-shell vacancy. In the transition, a characteristic K X-ray is emitted. The energy
of the X-rays is equal to the difference in the binding energies of the electrons in
the two shells, which depends on the atomic number of the element. Specifically,
X-rays due to transitions from the L shell to the K shell are called K, X-rays, while
X-rays due to transitions from the M to K shells are termed Kg X-rays. Refining
further, K,; and K, designate transitions from different subshells of the L shell,
that is, 2ps;; (L) and 2p,, (Lyy). X-rays for transitions from M to L are L, X-rays.
For each transition, the change in orbital angular momentum A# and total angular
momentum Aj must be AZ =+1 and Aj = 0, 1.

For a hydrogen-like atom, the Bohr model predicts that the transition energy
AE is

1 1
AE=E, —E =R,,th"‘(—z-——7] (1.1)
ni ng

where R.. is the Rydberg constant, h the Planck constant, c the speed of light, and
n the principal quantum number of the electron. The X-ray energy E. = —AF, after

inserting the physical constants, is
7 (11
. =13.6Z ="z eV (12)
ny n;
For K, X-rays from hydrogen-like atoms

1 1
Ex=]3.622(1—2—?JeV (1.3)
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and for L, transitions

1 1
Ex=13.GZZ(F—?)eV (14)
In a realistic atom, Z must be replaced by Zeaive to take care of the screening of
the nuclear charge by other electrons. Henry Moseley showed that the frequencies,

v, of the K, X-rays scale as

V! = const(Z —1) (1.5)
and those of the L, X-rays scale as

v'? = const(Z - 7.4) (1.6)

Thus, Moseley showed that the X-ray energies, hv, depend on the square of
an altered, effective atomic number due to screening. The relative intensities of
different X-rays depend on the chemical state of the atom, its oxidation state,
complexation with ligands, and generally on local electron density. The relative
intensities are, therefore, useful in chemical speciation studies. As will be dis-
cussed in Chapter 6, radioactive decays can be accompanied by X-ray production
and the latter may be used to identify the decaying nucleus.

1.3
Discovery of the Atomic Nucleus

Before the discovery of radioactivity, elements were considered as unchangeable
substances. In 1897, J.J. Thomson discovered the electron and concluded that the
atom must have a structure. As the mass of the electron is roughly 1/2000 of the
mass of hydrogen, he concluded that most of the mass of the atom must be con-
tained in the positively charged constituents. It was assumed that negative and
positive charges are evenly distributed over the atomic volume.

In 1911, Ernest Rutherford studied the scattering of o particles in thin metal
foils. He found that backscattering to 0> 90° was more frequent than expected for
multiple scattering from homogeneously charged atoms. This led Rutherford to
postulate the existence of an atomic nucleus having mass and positive charges
concentrated in a very small volume. The nucleus was supposed to be surrounded
by electrons at the atomic diameter and the electrons do not contribute to the
o-particle scattering. He postulated the following ansatz: the nuclear charge is Ze;
that of the « particle is Z, = 2e. The scattering force is the Coulomb force. The
nucleus is at rest in the collision and the path of an o particle in the field of the
nucleus is a hyperbola with the nucleus at the external focus. From these simplify-
ing geometric properties and from the conservation of momentum and energy,
Rutherford derived his famous scattering formula which relates the number n(6)
of o particles scattered into a unit area S at a distance r from the target foil F, see
Figure 1.3, to the scattering angle 6



