Java Puzzlers:

Traps, Pitfalls, and
Corner Cases

[52] Joshua Bloch Neal Gafter %

Javasipsx

(3 3Chin)

TRAPS, PITFALLS,
AND CORNER CASES

JOSHUA BLOCH = NEAL GAFTER

Z ARk gt

% POSTS & TELECOM PRESS
r

\

S IR AR FE

Java fiFE%

(Z3Chie)

Java Puzzlers: Traps, Pitfalls, and Corner Cases

A B S Y i AL

FfERgH (CIP) Bl

Java fREX. X/ () HEH (Bloch, J.), () I4E4F (Gafter, N.) .
—IbR: ARHREHHR, 2006.7
(R RERR 538D

ISBN 7-115-14956-9
[.7.. II. Of... @n... 1. JAVA B5—RBF&I+—3HEL V. TP312
oh B pR A B B0 CIP BB F (2006) 2 071838 5

R B B

Original edition, entitled JAVA™ PUZZLERS: TRAPS, PITFALLS, AND CORNER CASES, 1" Edition,
032133678X by BLOCH, JOSHUA, published by Pearson Education, Inc, publishing as Addison Wesley
Professional, Copyright © 2005 Pearson Education, Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording or by any information storage retrieval
system, without permission from Pearson Education, Inc.

China edition published by PEARSON EDUCATION ASIA LTD., and POSTS &
TELECOMMUNICATIONS PRESS Copyright © 2006.

This edition is manufactured in the People’s Republic of China, and is authorized for sale only in People’s
Republic of China excluding Hong Kong, Macau and Taiwan.

WRFhEARKMERR (FEFPESEE. RIHITHRENTEAZHE) HE.

A $ £ EMSH Pearson Education (IS4 E HARER) HABHIRE. TRFETSHE.

B R R 53
Java fREX (FECRR)

¢ = [2£] Joshua Bloch Neal Gafter
FHERE T M

¢ ABRBRHHRAHERERAT EERMRAX S BFE 145
HB4% 100061 BT &M 315@ptpress.com.cn
Mtk http://www.ptpress.com.cn

JE M S IR ENR) ER A
FABEREILERITHEH
¢ JFA: 800x1000 1/16
ENgK: 1825
Z¥. 409 FF 2006 4E 7 A% 11K
EN¥: 1-3500 2006 £ 7 AL5FEE 1 IKENRY
ZHENEFRZES BEFE: 01-2006-3199 5
ISBN 7-115-14956-9/TP * 5528
EH: 32.00 5T

EEBERS. (010)67132705 EPEFEHLL: (010)67129223

o =

5L PB—F, AR T KN EREREFE . BAT TR Java k816 i 18] 5 AT H] Java
IX ARG TR WRARIBEGER I, AT LA VRRIE M 1996 “E T HEEE 4. 7 2001
FEY], BAEAET —AMEE: W KSE4AH Java BT BT DE. FRATHEIX AN AEE LSS
T 4 BILLE Oracle A &) 1) Larry Jacobs, AthXiX AR AEH SZHF.

2001 4E 11 ALEIHA 1L, FRATTLE Oracle Open World 2% _F B ¥KAE T &8k “Java k@l ” (1)
Wk, A THMRES, BINMABADE “Type-it 525, Click f1 Hack”, JHM Tom FI
RayMagliozzi = #¥J Car Talk 17 H {5 F T — KHEMRISEUE - XM F B2 O S R 75
BUAEFRAIATE B S g R al ettt . d e RAT FniE $ext 7 8% 7.

Mk B2 A TSR R IR, BRI Java 9 “UNMERS” bRaR, FRATHE
JavaOne 2002 _E VX F JHLE Oracle 213 (178 U e S e RATT KT 2 2 /DIRATIIIA A A2 IX
2N . AERE RIS E, AT EHN T H4h 3 A “Java ki ” i, I+ HAERAEEL

i AR R EPEA], L & AERVFZ T, MBI ZR 50 X LRI LF
B3] 7 W i, JLEERAERAIYIEER . #E Linux Magazine 2003 4= 3 AT b, &A1)
KR T —RseA i Java BRI CEE, F HLFRE BWENUEAT DROERATIIEAE . A45JL
AU T RN VA SCE R T RS, DURVFVE 2 22 HAR IRk

JREABIERE SIUET Java V& HIBABERISEE B, (BRZRIRMTFFAIE Z LT 7 2ok
K Java. K A3E Java, AT 10 EBNL A FERRZSBRES T & . 9 Fh H A0 KEE
V& #aa Hen) i, Java 5 KEZHCFEMLLLRBE OS2 T o IR in) BB AF 1S ERG7E),
PR &2 2SR, X IERABEIXRNH M.

A5) 22 Bk R R — SRR A R T, ISR R A A SR AR WERRIE 7, (HSERRH “IE
TR, X AT A TRA TR PR L) B Rt A A5 11 JR BN, X o) B R S S 4,
(B S FR_EHUE S Ah— 2RV . URAESS) 25 X Se R 7 B R AE AT & i, 50T 35X 2L K
YU E S .

evd, RAIAEA D HABRRYE, B A EORAEAE A 2 2 R, R IATR
W29 E TN R ER—FE, A BIREEM N 22 BR 2 -8, I8 2k .

ANEERE, EIEIRR I SR LS TRATT ! W SRR — DRI AR B A 545K (KRR
Ak, e E Rk 20 EoMIkREHE, REFLE®MN, 2EH K E-mail F
puzzlers@javapuzzlers.com. USR] T VRAIF KL, FATTHE 8] /R4S K

BOR BV, EARME—ZEUN, SR TE A ZAR IR L 6 IR B U .

.

HERE

EBRATIF Java HIZES REZIDEESPIMZRL , 155 95 1% Java TEHD
SRS IBRIGHONAE, A SRS RIS S . 758 T S0
AR TR , XS SRS RSO T SR B DS ST OB R AR
EIY, BERRERT T WI— BRI B EOIEH SHG. A-BHRE TR
REGHNER, THREH 2IsE, |

FBUEIEINES, BHTRNSR, RAR. 513 Java FHIRIES0
R, BEEES Java MRS I EFEHLEN Java FRSEIRE.

ACKNOWLEDGMENTS

We thank the whole team at Addison-Wesley for their kindness and professional-ism. Early in the life of
this project, Ann Sellers was our editor. Her infectiousenthusiasm helped get the project off to a good start.
When Ann moved on, GregDoench, executive editor, took over. Greg is a wonderful editor and a perfect
gen-tleman. He accommodated the many demands of this project without batting aneyelash. Greg’s
editorial assistant is Noreen Regina. Our project editor is TyrrellAlbaugh and our marketing manager is
Stephane Nakib. Our cover designer isChuti Prasertsith and our copy editor is Evelyn Pyle. They all did
great workunder a tight schedule.

We thank our management at Google for their support. Our director, PrabhaKrishna, was unfailingly
encouraging. We thank Sergey Brin, Larry Page, andEric Schmidt for creating the best engineering
environment on the planet.

We thank the many Java programmers who submitted bug reports to Sun overthe years, especially
those who submitted bug reports that turned out not todescribe real bugs. Such bug reports were perhaps
the richest source of puzzlermaterial: If correct behavior misled programmers into thinking that they had
discovered a bug, it probably represents a trap or pitfall. In a similar vein, we thankSun for having the
courage and wisdom to put the entire Java bug database on theWeb in 1996 [Bug]. This action was
unheard of at the time; even today it is rare.

“Send us your puzzlers,” we said at the end of each talk, and send them youdid—from all over the
world. Special thanks are due Ron Gabor and Mike“madbot” McCloskey for the sheer magnitude of their
contributions. Roncontributed Puzzles 28, 29, 30, and 31 and Mike contributed Puzzles 18, 23, 40,56, and
67. We thank Martin Buchholz for contributing Puzzle 81; ArmandDijamco for contributing Puzzle 14;
Prof. Dr. Dominik Gruntz for contributingPuzzles 68 and 69; Kai Huang for contributing Puzzle 77; Jim
Hugunin forcontributing Puzzle 45; Tim Huske for contributing Puzzle 41; Peter Kessler forcontributing
Puzzle 35; Michael Klobe for contributing Puzzle 59; MagnusLundgren for contributing Puzzle 84; Scott
Seligman for contributing Puzzle 22;Peter Stout for contributing Puzzle 39; Michael Tennes for
contributing Puzzle 70;and Martin Traverso for contributing Puzzle 54.

2

ACKNOWLEDGMENTS

We thank the dedicated band of reviewers who read the chapters of this bookin raw form: Peter von
der Ahé, Pablo Belver, Tracy Bialik, Cindy Bloch, DanBloch, Beth Bottos, Joe Bowbeer, Joe Darcy, Bob
Evans, Brian Goetz, Tim Hallo-ran, Barry Hayes, Tim Huske, Akiyoshi Kitaoka, Chris Lopez, Mike
“madbot”McCloskey, Michael Nielsen, Tim Peierls, Peter Rathmann, Russ Rufer, SteveSchirripa, Yoshiki
Shibata, Marshall Spight, Guy Steele, Dean Sutherland, MarkTaylor, Darlene Wallach, and Frank Yellin.
They found flaws, suggested improve-ments, offered encouragement, and hurled invective. Any flaws that
remain are thefault of my coauthor.

We thank the queen of the bloggers, Mary Smaragdis, for providing a homefor us on her celebrated
blog [MaryBlog]. She graciously let us try out the mate-rial that became Puzzles 43, 53, 73, 87, and 94 on
her readers. We judged the solu-tions and Mary gave out the prizes. For the record, the winners were Tom
Hawtin,Tom Hawtin (again), Bob “Crazybob” Lee, Chris Nokleberg, and the mysteriousAT of Odessa,
Ukraine. The discussions on Mary’s blog contributed greatly tothese puzzles.

We thank our many supporters who responded enthusiastically to Java Puz-zlers over the years. The
members of SDForum Java SIG served as guinea pigs foreach talk in its preliminary form. The JavaOne
program committee provided ahome for the talks. Yuka Kamiya and Masayoshi Okutsu made the “Java
Puzzlers™talks a success in Japan, where they took the form of real game shows withonstage contestants.
Remarkably, the same person won every single contest: Theundisputed Java Puzzler champion of Japan is
Yasuhiro Endoh.

We thank James Gosling and the many fine engineers who created the Javaplatform and improved it
over the years. A book like this makes sense only for aplatform that is rock solid; without Java, there could
be no “Java Puzzlers.”

Numerous colleagues at Google, Sun, and elsewhere participated in technicaldiscussions that
improved the quality of this book. Among others, Peter von derAhé, Dan Bloch, and Gilad Bracha
contributed useful insights. We give specialthanks to Doug Lea, who served as a sounding board for many
of the ideas in thebook. Once again, Doug was unfailingly generous with his time and knowledge.

We thank Professor Akiyoshi Kitaoka of the Department of Psychology atRitsumeikan University in
Kyoto, Japan, for permission to use some of his opticalillusions to decorate this work. Professor Kitaoka’s
illusions are, quite simply,astonishing. Words cannot do them justice, so you owe it to yourself to take
alook. He has two volumes available in Japanese [Kitaoka02, Kitaoka03]. AnEnglish translation
encompassing both volumes is coming soon [Kitaoka05). Inthe meantime, pay a visit to his Web site:
http://www.ritsumei.ac.jp/~akitaoka/index-e.html. You won’t be disappointed.

We thank Tom and Ray Magliozzi of Car Talk for providing jokes for us tosteal, and we thank their
legal counsel of Dewey, Cheetham, and Howe for notsuing us.

We thank Josh’s wife, Cindy, for helping us with FrameMaker, writing theindex, helping us edit the
book, and designing the decorative stripe at the begin-ning of each chapter. Last but not least, we thank our
families—Cindy, Tim, andMatt Bloch, and Ricki Lee, Sarah, and Hannah Gafter—for encouraging us
towrite and for putting up with us while we wrote.

Josh Bloch
Neal Gafter

San Jose, California
May 2005

Contents

1 INtroductionceeceeceeeecenssscsscnssessal

2 Expressive Puzzlersccceiveiiieiieceenesdd
Puzzle 1: Oddity.......... ... 5
Puzzle2: TimeforaChange 7
Puzzle 3: LongDivision........... ... oo, 9
Puzzle4: It’sElementary, 11
Puzzle5: TheJoyofHex it 13
Puzzle 6: Multicast.ot 15
Puzzle 7: SwapMeat 17
Puzzle8: DosEquiscoiiiiiiiiiiiiiiian, 19
Puzzle9: Tweedledum............. iinnt. 21
Puzzle 10: Tweedledee........ i, 23

3 Puzzlers with Character........... ceseecans ceeed2S
Puzzle 11: TheLastLaugh................... 25
Puzzle 12: ABC e 27

Contents

Puzzle 13:
Puzzle 14:
Puzzle 15:
Puzzle 16:
Puzzle 17:
Puzzle 18:
Puzzle 19:
Puzzle 20:
Puzzle 21:
Puzzle 22:
Puzzle 23:

Animal Farm 29
EscapeRout............ i 31
Hello Whirled oot 33
LinePrinter i i, 35
Huh?. 37
StringCheese. i, 39
ClassyFire i 41
What’'s My Class?, 43
What’s My Class, Take 2. 45
Dupeof URL....... i, 47
NoPain,NoGain............. ..., 49

4 LoopyPuzzlersocooveieeneninccnnnennasssd3

Puzzle 24:
Puzzle 25:
Puzzle 26:
Puzzle 27:
Puzzle 28:
Puzzle 29:
Puzzle 30:
Puzzle 31:
Puzzle 32:
Puzzle 33:
Puzzle 34:
Puzzle 35:

A Big DelightinEveryByte 53
InclementIncrement, 55
Inthe LOOp.oiiiii i 57
Shifty ’s. ..o e 59
LOOPET . .ottt 61
Brideof Loopero, 63
Sonof Looperiiiiiiiiiiiiiain, 65
Ghostof Looper., 67
Curseof Looper., 69
Looper Meets the Wolfman. 71
DownfortheCount............. 73
Minute by Minute 75

5 Exceptional Puzzlersccceeveneeeeeeea 7

Puzzle 36:
Puzzle 37:
Puzzle 38:
Puzzle 39:
Puzzle 40:
Puzzle 41:
Puzzle 42:
Puzzle 43:
Puzzle 44:
Puzzle 45:

Indecision.coiiiiii it i e e 77
Exceptionally Arcane. oan... 79
The Unwelcome Guest.cooeeiiie . 81
Hello,Goodbye 83
The Reluctant Constructor.cvevvieeeennn 85
Fieldand Streamttt 87
Thrownforaloop......... 89
Exceptionally Unsafe. 93
Cuting Classoviiiii i 97

Exhausting Workout 101

Contents
6 Classy Puzzlers teesssecssccsananancs 105
Puzzle 46: The Case of the Confusing Constructor 105
Puzzle 47: Well, DogMy Cats! 107
Puzzle 48: AllIGetIsStatic 109
Puzzle 49: Larger ThanLife............................. 111
Puzzle 50: Not Your Typeoo i, 113
Puzzle 51: What’sthePoint? 115
Puzzle 52: SumFun, 119
Puzzle 53: DoYourThing 123
Puzzle 54: Nulland Void 125
Puzzle 55: Creationism. 127
7 LibraryPuzzlersccoviivvinnn.....131
Puzzle 56: BigProblem 131
Puzzle 57: What’sinaName? 133
Puzzle 58: MakingaHashof It 137
Puzzle 59: What’s the Difference?........................ 139
Puzzle 60: One-Liners 141
Puzzle 61: The DatingGame 143
Puzzle 62: The NameGame............................. 145
Puzzle 63: MoreoftheSame 147
Puzzle 64: TheModSquad.............................. 149
Puzzle 65: A Strange Saga of a Suspicious Sort 152
8 Classier Puzzlers B 14
Puzzle 66: APrivateMatter 157
Puzzle 67: AlStrungOut. 161
Puzzle 68: Shadesof Gray 163
Puzzle 69: FadetoBlack 165
Puzzle 70: PackageDeal................................ 167
Puzzle 71: ImportDuty................................. 169
Puzzle 72: FinalJeopardy............................... 171
Puzzle 73: Your Privates Are Showing 173
Puzzle 74: Identity Crisis 175
Puzzle 75: HeadsorTails?.............................. 177

3

4 Contents

9 More Library Puzzlersccoc00unnn ...183
Puzzle 76: PingPong......... i 183
Puzzle 77: The Lock Mess Monster 185
Puzzle 78: Reflection Infection........................ ... 189
Puzzle 79: It'saDog’sLife..............0 193
Puzzle 80: FurtherReflection 195
Puzzle 81: Charred Beyond Recognition. 197
Puzzle 82: BeerBlast.............. o il i, 199
Puzzle 83: Dyslexic Monotheism 201
Puzzle 84: Rudely Interrupted. 203
Puzzle 85: Lazy Initialization 205

10 Advanced Puzzlersccoviieeeeeeennneeeeses209

Puzzle 86: Poison-ParenLitter, 209
Puzzle 87: StrainedRelations 211
Puzzle 88: RawDeal i 213
Puzzle 89: GenericDrugs i i, 217
Puzzle 90: It’s Absurd, It’s a Pain, It’s Superclass! 221
Puzzle 91: Serial Killero i, 224
Puzzle 92: Twisted Pair. s, 229
Puzzle 93: ClassWarfare.co vttt it 231
Puzzle 94: LostintheShuffle 233
Puzzle 95: JustDesserts.oov it e 237
A Catalog of Trapsand Pitfalls 239
B Notes on the Illusions ceeereneneees259
References ® &6 & o @ 0o ® o o o .’ * ® & & & 8 0 0 00 0 00 *® & & 0 0 0 0 0 00 .265

Introduction

This book is filled with brainteasers about the Java programming language and its
core libraries. Anyone with a working knowledge of Java can understand these
puzzles, but many of them are tough enough to challenge even the most experi-
enced programmer. Don’t feel bad if you can’t solve them. They are grouped
loosely according to the features they use, but don’t assume that the trick to a puz-
zle is related to its chapter heading; we reserve the right to mislead you.

Most of the puzzles exploit counterintuitive or obscure behaviors that can lead
to bugs. These behaviors are known as traps, pitfalls, and corner cases. Every
platform has them, but Java has far fewer than other platforms of comparable
power. The goal of the book is to entertain you with puzzles while teaching you to
avoid the underlying traps and pitfalls. By working through the puzzles, you will
become less likely to fall prey to these dangers in your code and more likely to
spot them in code that you are reviewing or revising.

This book is meant to be read with a computer at your side. To get the most
out of the puzzles, you’ll need a Java development environment, such as Sun’s
JDK [JDK-5.0]. It should support release 5.0, as some of the puzzies rely on fea-
tures introduced in this release. You can download the source code for the puzzles
from www.javapuzzlers.com. Unless you’re a glutton for punishment, we recom-
mend that you do this before solving the puzzles. It’s a heck of a lot easier than
typing them in yourself.

Chapter 1 - Introduction

Most of the puzzles take the form of a short program that appears to do one
thing but actually does something else. It’s your job to figure out what the pro-
gram does. To get the most out of these puzzles, we recommend that you take this
approach:

1. Study the program and try to predict its behavior without using a computer. If
you don’t see a trick, keep looking.

2. Once you think you know what the program does, run it. Did it do what you
thought it would? If not, can you come up with an explanation for the behavior
you observed?

3. Think about how you might fix the program, assuming it is broken.

4. Then and only then, read the solution.

Some of the puzzles require you to write a small amount of code. To get the
most out of these puzzles, we recommend that you try—at least briefly—to solve
them without using a computer, and then test your solution on a computer. If your
code doesn’t work, play around with it and see whether you can make it work
before reading the solution.

Unlike most puzzle books, this one alternates between puzzles and their solu-
tions. This allows you to read the book without flipping back and forth between
puzzles and solutions. The book is laid out so that you must turn the page to get
from a puzzle to its solution, so you needn’t fear reading a solution accidentally
while you’re still trying to solve a puzzle.

We encourage you to read each solution, even if you succeed in solving the
puzzle. The solutions contain analysis that goes well beyond a simple explanation
of the program’s behavior. They discuss the relevant traps and pitfalls, and provide
lessons on how to avoid falling prey to these hazards. Like most best-practice
guidelines, these lessons are not hard-and-fast rules, but you should violate them
only rarely and with good reason.

Most solutions contain references to relevant sections of The Java™ Language
Specification, Third Edition [JLS]. These references aren’t essential to under-
standing the puzzles, but they are useful if you want to delve deeper into the lan-
guage rules underlying the puzzles. Similarly, many solutions contain references
to relevant items in Effective Java™ Programming Language Guide [EJ]. These
references are useful if you want to delve deeper into best practices.

Some solutions contain discussions of the language or API design decisions
that led to the danger illustrated by the puzzle. These “lessons for language

Chapter 1 « Introduction

designers” are meant only as food for thought and, like other food, should be
taken with a grain of salt. Language design decisions cannot be made in isolation.
Every language embodies thousands of design decisions that interact in subtle
ways. A design decision that is right for one language may be wrong for another.

Many of the traps and pitfalls in these puzzles are amenable to automatic
detection by static analysis: analyzing programs without running them. Some
excellent tools are available for detecting bugs by static analysis, such as Bill Pugh
and David Hovemeyer’s FindBugs [Hovemeyer04]. Some compilers and IDEs,
such as Jikes and Eclipse, perform bug detection as well [Jikes, Eclipse]. If you
are using one of these compilers, it is especially important that you not compile a
puzzle until you’ve tried to solve it: The compiler’s warning messages may give
away the solution.

The appendix of this book is a catalog of the traps and pitfalls in the Java plat-
form. It provides a concise taxonomy of the anomalies exploited by the puzzles,
with references back to the puzzles and to other relevant resources. Do not look at
the appendix until you’re done solving the puzzles. Reading the appendix first
would take all the fun out of the puzzles. After you've finished the puzzles,
though, this is the place you’ll turn to for reference.

Expressive Puzzlers

The puzzles in this chapter are simple. They involve only expression evaluation.
But remember, just because they’re simple doesn’t make them easy.

Puzzle 1: Oddity

The following method purports to determine whether its sole argument is an odd
number. Does the method work?

public static boolean isOdd(int i) {
return i % 2 == 1;
}

Chapter 2 - Expressive Puzzlers

Sotution 1 Oddity

An odd number can be defined as an integer that is divisible by 2 with a remainder
of 1. The expression i % 2 computes the remainder when 17 is divided by 2, so it
would seem that this program ought to work. Unfortunately, it doesn’t; it returns
the wrong answer one quarter of the time.

Why one quarter? Because half of all int values are negative, and the is0dd
method fails for all negative odd values. It returns false when invoked on any
negative value, whether even or odd.

This is a consequence of the definition of Java’s remainder operator (%). It is
defined to satisfy the following identity for all int values a and all nonzero int
values b:

(@a/b) *b+ (a%b) == a

In other words, if you divide a by b, multiply the result by b, and add the remain-
der, you are back where you started [JLS 15.17.3]. This identity makes perfect
sense, but in combination with Java’s truncating integer division operator
[JLS 15.17.2], it implies that when the remainder operation returns a nonzero
result, it has the same sign as its left operand.

The is0dd method and the definition of the term odd on which it was based
both assume that all remainders are positive. Although this assumption makes
sense for some kinds of division [Boxing], Java’s remainder operation is perfectly
matched to its integer division operation, which discards the fractional part of its
result.

When i is a negative odd number, i % 2 is equal to -1 rather than 1, so the
1s0dd method incorrectly returns false. To prevent this sort of surprise, test that
your methods behave properly when passed negative, zero, and positive val-
ues for each numerical parameter.

The problem is easy to fix. Simply compare i % 2 to @ rather than to 1, and
reverse the sense of the comparison:

public static boolean isOdd(int i) {
return i ¥ 2 !'= 0;
}

