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Preface to the Series

In the last few years many important developments have taken place
in Soviet science which may have not received as much attention as
deserved among the international community of scientists because of
language problems and circulation problems.

In launching this new series of Soviet Scientific Reviews we are
motivated by the desire to make accounts of recent scientific advances
in the USSR more readily and rapidly accessible to scientists who do
not read Russian. The articles in these volumes are meant to be in the
nature of reviews of recent developments and are written by Soviet
experts in the fields covered. Most of the manuscripts are translated
from Russian. In the interest of speedy publication neither the authors
nor the volume editors have an opportunity to see the translations or
to read proofs. They are therefore absolved of any responsibility for
inaccuracies in the English texts.

Soviet Scientific Reviews will appear annually, with the average of
specific subject areas in each of the sciences varying from year to year.
In 1979 we published volumes in Chemistry and Physics. In 1980 we
are expanding the series with the addition of annual volumes in Biology,
Mathematical Physics, and Astrophysics'and Space Physics.

We are much indebted to the volume editors and individual authors
for their splendid cooperation in getting these first volumes put together
and sent to press under considerable time pressure.

The future success of this series depends, of course, on how well
it meets the readers’ needs and desires. We therefore earnestly solicit
readers’ comments and particularly suggestlons for topics and authors
for future volumes.

By taking this initiative we hope to contribute to the development
of scientific cooperation and the better understanding among scientists.



FOREWORD

I. M. Khalatnikov,

Director, L.D. Landau Institute of Theoretical Physics,
Academy of Sciences of the U.S.S.R. ‘

The second volume of “"PHYSICS REVIEWS" in the serics of Soviet
Scientific Reviews contains a collection of both experimental and the-
oretical works done by Soviet authors in 1978 and written in 1979. To
our regret, it appears with a considerable delay due to purely technical
difficulties of the translation. Unfortunately, we have to accept the
fact that a review itself and its translation into English take about a
year. This it is not surprising considering the long established practice
of translating articles in such physical journals like JETP where the
English version appears a year later than the Russian original.

The second volume includes three reviews of experimental works
on solid state physics. In his article V. Edelman investigates properties
of electrons localized on the liquid helium surface. The work by I.
Krylov is dedicated to macroscopic electrodynamics of the transient
state of superconductors. V. Tsoi in his paper develops an original
method of transverse focusing of conduction electrons to study their
interaction with a conductor’s surface. The collection of theoretical
reviews consists of four works. The article by V. Mineev systematically
surveys homotopic topology methods applicable for investigating sin-
gularities, domain walls, solitons in superfluid phases of *He and other
systems with spontaneously broken symmetry. The author was among
the first to apply these methods to physics. In his paper A. Zamolod-
chikov studies properties of S-matrices for two-dimensional models,
where he succeeds in deriving exact expressions for S-matrices. The
large contribution by E. Bogomol’'nyi et al. is devoted to new methods
of calculating high orders of the perturbation theory in the quantum
field theory, which prove extremely effective in obtaining exact results
in the asymptotical region. And finally P. Wiegmann contributes a
review of the results of his own research on the character of phase
transitions in two-dimensicnal systems with the Abelian symmetry
group—i.e., -of problems associated with the physics of films, lattice
field theories, and the theory of one-dimensional fermion systems.

The editor would also like to announce that the third volume of
“PHYSICS REVIEWS"" will contain articles dealing with experimen-
tal nuclear and elementary-particle physics.
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2. A. B. ZAMOLODCHIKOV

1. Introduction

Models exist of the relativistic scattering theory permitting precise
computation of all elements of the total S matrix in (1 + 1)-dimensional
space-time. Explicit calculation of the total S matrix is bascially pos-
sible because of its special property knawn as factorization: An ar-
bitrary L-particle element of the S matrix is expressed in standard form
in terms of the product of L(L. — 1)/2 two-particle S matrices. Fac-
torized S matrices contain only purely elastic scatterings. Never-
theless, they are far from trivial and are not, in general, diagonal.
Nondiagonal processes are permissible in theories with spectrum
degeneracy (i.e., containing several types of particle of identical mass);
they are responsible for the redistribution of momenta among particles
of different types. Essentially, in the non-diagonal case, the factori-
zation condition of the total S matrix imposes definite limitations on
the two-particle S matrix (in addition to the usual requirements of
analyticity and unitarity), namely, the factorization equations. (See
review [1] and references therein.)

Factorized S matrices first arose in connection with non-relativistic
problems [2-4]. The first relativisitic example appears in [5] (see also
[6]). The factorization equations were first used in [7]. At the present
time, a number of factorized S matrices have been constructed; these
include S matrices with intrinsic symmetries O(2) [7-10], O(N) with N
= 3 [11,12], U(N) with N = 2 [13,14], and Z, [15]; other examples
occur in [16,17].

The structure of the multiparticle elements of the factorized S matrix
corresponds to the idea of the scattering process as a succession of
pair collisions, with the particles moving freely between collisions,
while the pair collisions are described by the two-particle S matrices.
Under the condition of the particle spectrum degeneracy, the construc-
tion of the multiparticle S matrix includes summation over the types
of particles in intermediate states.

According to the method used to construct them from two-particle
S matrices, the L-particle scattering amplitudes (analytically continued
to Euclidean values of all the external momenta, when they become
real) can for large L be interpreted as model systems of lattice statistics
connected with a definite (generally irregular) lattice. The number of
lattice vértices is L(L — 1)/2, while the structure of the lattice depends



FACTORIZED S MATRICES AND LATTICE STATISTICAL SYSTEMS 3

on the values of the external momenta (regular lattices correspond to
some particular choices of the external momenta). These statistical
systems are similar in their formulation to the ‘‘ice’’ model [18-20] and
to the Baxter ‘‘eight-vertex’’ model [21-24]: fluctuating variables are
assigned to the edges of the lattice and the partition function is com-
puted as the sum over all possible states of all the edges, the specified
statistical weights of all possible ‘‘vertex configurations’ (vertex
weights) being taken into account. The elements of the two-particle S
matrix act as the vertex weights.

The eight-vertex model (including the ice model, the Ising model,
and other physicially interesting systems as particular cases) is exactly
solvable. In [21] Baxter found an exact expression for the partition
function in the case of a rectangular lattice. The possibility of obtaining
the exact solution is basically due to the existence of a parametric
family of transfer matrices that commute at different values of the
parameter.

Baxter [22] also investigated the exactly solvable eight-vertex model
on an irregular lattice. He discovered a remarkable symmetry of this
model, which he called Z-invariance: The partition function of the
model (as well as some correlation functions) are left unchanged upon
special deformations of the lattice that essentially change the coordi-
nation structure. The existence of a parametric family of commuting
transfer matrices turns out to be the simple consequence of Z-invari-
ance. In particular, the Z-invariance permits direct extension of the
exact solution of the rectangular lattice model to the case of an infinite
irregular lattice [22].

In fact, all the statistical systems connected (in the manner indicated
above) with factorized S matrices possess Z-invariance; this is the
effect of the factorization equations for the corresponding two-particle
S matrix. All such systems, apparently, are exactly solvable.

Some of the known factorized S matrices correspond to known
exactly solvable lattice models. For example, the S matrix with O(2)
symmetry [7-10] is connected with the ice model [18-20], the Z, sym-
metrical S matrix [15] is connected with the eight-vertex Baxter model.
Other known examples of factorized S matrices seem to correspond
to new lattice systems.

This paper provides a short review of the general characteristics of
factorized S matrices and explains their formal connection with sta-
tistical lattice systems.
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Il. Factorized S Matrices

1. Conservation laws and factorization

Because of the specific characteristics of particle kinematics in (1
+ 1) dimensional space-time, the existence of scattering theories with
the following simplifying properties is possible.

(a). The scattering is restricted by an infinite series of selection rules
ensuring the conservation of a set of asymptotic momenta of all par-
ticles:

{P,; a € in} = {Py; b € out} 2.1

Here, P.(P,) are the spatial components of the momenta of particles
in the in (out) state. In particular, the total number of particles is
conserved.

(b). The L-particle S matrix is factorized into L(L — 1)/2 two-particle
S matrices as if the process of L-particle scattering were reduced to
a sequence of pair collisions.

Because of the characteristic (b), such a scattering theories are called
factorized.

Factorized S matrices are encountered in the study of particle scat-
tering in (1 + 1)-dimensional of quantum field theory models connected
with completely integrable nonlinear equations such as the nonlinear
Schrodinger and sine-Gordon equations [5,6,25]. Such dynamic sys-
tems are characterized by the existence of an infinite series of inde-
pendent integrals of motion that reduce at t - * « to the sums of
integer powers of asymptotic particle momenta:

Qo= > Pr= > Phn=1.2,... 2.2

a € in b € out ¢

The property (a) of the corresponding scattering theory is dictated
by equalities (2.2).

Actually, characteristic (b) is, in esZence, the kinematic conse-
quence of the selection rules (2.1). The proof and explanation of this
fact can be found in papers [1,26]; we shall not discuss it in detail here.
We note only that the origin of this property of the S matrix can be
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understood in the following way. The conservation laws (2.2) can be
thought to be the consequence of an infinite series of dynamic sym-
metries of the theory. In view of the asymptotic form (2.2) of the Q,
operators, it is natural to assume that there exist particular symmetry
transformations that reduce at t » = o« to independent translations of
the asymptotic coordinates of individuals particles.* By performing
such translations, one can get an arbitrarily large space-time separation
of all the regions in which the pair collisions occur. This permits one
to express the amplitude of any multiparticle process in terms of two-
particle amplitudes. Obviously, for every multiparticle amplitude there
are several (generally different) formal expressions in terms of two-
particle amplitudes, since the pair collisions making up the whole pro
cess can be differently ordered in time. The sequence of the pair col-
lisions is determined by the values of the asymptotic coordinates. The
symmetry mentioned above therefore means that the various formal
expressions for the multiparticle amplitude must be equal. This re-
quirement, which reduces to definite functional equations for the two-
particle S matrix (the factorization equations) plays the important part
in the factorized scattering theory.

Any factorized S matrix satisfying the conditions of unitarity and
analyticity represents a self-consistent 1 + 1 dimensional scattering
theory. It can be considered formally by positing the properties of (a)
and (b) above, without raising the question of their dynamic origin and
completely disregarding the specific dynamics of interaction. In what
follows, we shall adhere to this point of view.

2. General structure of the relativistic factorized S matrix

In (1 + 1)-dimensional space-time, the asymptotic states of the
particles are characterized, besides the types of the particles, by the
values of their two-momenta P%:

(P2)* = (P)* — (P)? = m] (2.3)

*It is implied that the scattering states (say, the in-states) are slightly smeared over
the asymptotic momenta in a way that an assembly of converging wave packets, well
separated in space, exist at t - — . The asymptotic coordinates specify in the usual
manner the relative arrangement of the packets in the infinite past.
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where the subscript a is the number of the individual particles in the
given state, and m, is the mass of the a-th particle. It is convenient to

use instead of the momenta the rapidities ©,, defined by the following
formulas:

P = m, cosh 6,; P! = m, sinh 6, 2.4)

The scattering amplitudes of the particles, which depend only on
scalar products of the form P4Pg because of relativistic invariance, will
in terms of the © variables be functions of the rapidity differences 6,
— 6,. We shall use the notation 6,, = 6, — ©,.

To consider the general case of the factorized scattering theory, we
assume n different particle types, which we shall designate A; = (A,,
A, ..., A,); their masses are m;. For the sake of simplicity, we
assume all the A; particles to be real: CA; = A,, where C is the charge
conjugation. We write the L-particle asymptotic in (out) state contain-

ing particles A;, A;,, . . . , A;, with rapidities O, ©,, . . ., 6, re-
spectively, in the form
|Ai(81), Ai(B2), . . ., Ai(BL)) (int) 2.5)

We assume also that the of the scattering theory of the A; particles
has the properties (a) and (b) mentioned in article 1 of this section. In
particular, the selection rule (1) means that for any L, an in state of
the form (2.5) can be expanded into a finite superposition of the out
states:

IA_il(el)’ Aiz(62), LI AiL(eL) ) in =

(2.6)
S{:{: l:: (eh OZv L] el..) I Aj](el)oy Ajz(GZ)s CECEEI ] AjL(e]_,) > out

Here and in what follows, summation from 1 ton over the repeated
indices numbering the types of particles is implied. The coefficients
S}: = j’;}_ (84, 6,, . . . 6y) of the expansion (2.6) are the elements of the
L-particle S matrix.

Actually, in the right-hand side of the expansion (2.6) we have only
those terms for which

m.il = mil; mjz = miz; e ;mjL = miL (2.7)
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[This also follows from properties (a) and (b).] In other words, the
redistribution of rapidities is possible only between particles of the
same mass. If all the masses m; are different, expansion (2.6) contains
only one term with j; = i;,j, = Iy, ..., j. = i, which means that
S is a diagonal matrix. The case of the diagonal S matrix turns out to
be less interesting. We shall therefore assume that there is a mass
degeneracy among the A; particles; i.e., the mass spectrum consists
of a number of degenerate multiplets. Moreover, we shall assume for
the sake of simplicity that all the A; particles have the same mass m.
Since in the theory of the factorized S matrix the limitation (2.7) is the
unique kinematic manifestation of the particle masses, the case of
identical masses is, essentially, the most general.
For L = 2, formula (2.6) takes the form

| A©A(B)) ) in = SE (B, — 6y | AdODA(B) ) o (2.8)
and defines the two-particle S matrix S¥ (8). The two-particle S matrix
is conveniently expressed by the diagram of Fig. 1. Each of the two

intersecting lines in the drawing represents one of the values of the
rapidities ©, and ©,. The two upper legs of the diagram (it might be

{

o e

{ K

Figure 1. Diagram Representing the Two-Particle S Matrix S¥ (0, — 6,).
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better to call them arms) represent the initial particles while the two
lower legs represent the final ones. The time is assumed to be running
from top to bottom. As shown, the indices i, j, k, and | are assigned
to the legs.

The arbitrary element of the L-particle factorized S matrix
St (B, ..., Oy) defined by the relation (2.5) can be expressed
in standard form in terms of the two-particle S matrices S;' () ac-
cording to the following rule. Consider a diagram made up of L straight
lines of various slopes (see Fig. 2 which corresponds to the case L
= 4). To each line we assign one rapidity value from {©,, ©,, . . .,
O, } such that the order of increasing rapidities corresponds to the order
of increasing slopes (counted counterclockwise from the vertical). To
be specific, let us consider the order of rapidities as 6, > 6, > 0,
> . ..> 0.. We also attach the two-particle S matrix S¥' (8,,) to each
intersection point of the straight lines, 6, and 6y, (0, > 6,) being the

52

Figure 2. Diagram Representing the L-particle S Matrix for the Case of L = 4.
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m n

Figure 3. Fragment of a Diagram. It Corresponds to the Analytic Expression (2.9).

rapidities of the intersected lines. The legs of some of these matrices
turn out to be linked. For such a situtation, we imply the summation
from 1 to n over the common index corresponding to the linked legs.
For example, the expression

SPi (612) SiT (6,3) (2.9)
corresponds to a fragment of the diagram shown in Fig. 3. The L-
particle diagram also has 2L external (unlinked) legs: L upper, and L
lower. The indices numbering the types of initial particles {i} = {i,, i,

., i} corresponds to the upper external legs while the indices of

the final particles {j} = {ji, j2. . . . , j.} corresponds to the lower ones.
The expression corresponding to the entire diagram will then be the
L-particle S matrix 8}! - 11 (O, . . ., 6,).

The described rule is not unambiguous for a general matrix S} (6).
Actually, there are several different diagrams corresponding to one
and the same L-particle S matrix element. These diagrams differ in
that one or several lines are shifted. For example, the element of the

S matrix shown in Fig. 2 can alternatively be represented by the dia-
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e

Y
31

Figure4. Alternative Representation of the Same Element of the Four-Particle S Matrix

as Shown in Fig. 2.

gram of Fig. 4 (as well as some other diagrams). Various expressions
of the S matrix in terms of the two-particle amplitudes S¥' (©) obviously
correspond to various diagrams.

These diagrams can be considered as representing the space-time
map of particle scattering. In such an interpretation, parallel shifts of
the straight lines correspond to shifts of the asymptotic coordinates of
the particles. On the basis of the concepts of symmetry given in article
1 of this section,* diagrams differing by a parallel shift of the straight
lines must actually be equal.

For this requirement to be satisfied, the equality (for any values of
6., 6,, and O5) of the three-particle diagrams, shown in Fig. 5 is
necessary and sufficient. The last can be written in the form

*A more rigorous but also more cumbersome reasoning is given in reference [1].



