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Preface

This book is an outgrowth of courses we have offered on stochastic calculus and
its applications to derivative securities pricing over the last 15 years. The courses
have been offered several times to doctoral students and students in the Master of
Quantitative Finance and its forerunner programs in the Finance Discipline Group,
UTS Business School at the University of Technology Sydney (UTS), and three
times to students in the Financial Engineering program at Nanyang Business School
in Singapore. It has also served for shorter courses at the Graduate School of
International Corporate Strategy at Hitotsubashi University in Tokyo, the Faculty
of Economics at the University of Bielefeld in Germany, the Dipartimento di
Matematica per le Decisioni at the University of Florence and the Graduate School
of Economics at the University of Kyoto.

The aim of the book is to provide a unifying framework within whlch many
of the key results on derivative security pricing can be placed and related to
each other. We have also tried to provide an introductory discussion on stochastic
processes sufficient to give a good intuitive feel for Ito’s Lemma, martingales and
the application of Girsanov’s theorem. With the explosion of the literature on option
pricing in the last four decades, it would obviously not have been possible to cover in
one course even a fraction of the main results. Rather, it was our intention that those
completing the course would be able to more confidently approach that literature
with a good intuitive understanding of the basic techniques, a good overview of
how the different parts of the literature relate to each other, and a knowledge of
how to implement the theory for their own particular problems. Judging from the
feedback we have received, the book has been successful in these aims, and we
have been heartened by the very positive response we have had from people who
have read it. This includes not only our immediate circle of research collaborators
and doctoral students at UTS but also students, researchers and practitioners both in
Australia and overseas. The feedback we have received has left us more convinced
than we were 15 years ago that this book fills an important gap in the pedagogical
finance literature. There are now many excellent monographs and survey papers that
treat the revolution of stochastic methods in finance over the last 40 years. However,
many of these treatments require of the reader a high degree of, if not “fluency”,
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then certainly “maturity” with the concepts of measure theory or, are written in
the very formal lemma/theorem/proof style of modern mathematics. Readers who
are not comfortable with these concepts and formal mathematical approaches are
left with a feeling of not understanding the essential foundations of the subject
and always lack confidence in applying the techniques of stochastic finance. Our
aim in this book is to present to the reader a treatment which emphasises more
the financial intuition of the material, and which is at the same mathematical level
and uses the same basic hedging arguments of the early papers of Black—Scholes
and Merton, which sparked off the revolution to which we have referred above.
Uppermost in our mind has been the desire to give the reader an intuitive feel for the
many difficult mathematical concepts that will be encountered in working through
this book. Whilst the mathematical level is demanding, it should nevertheless be
attainable for readers who are comfortable with an intermediate level of calculus
and the non-measure theoretic approach to probability theory.

By the foregoing remarks, we do not intend to downplay or denigrate the
importance of the modern measure theoretic approach to the theory of diffusion
processes and semimartingale integration. We are acutely aware of the fact that
many of the subtleties of stochastic finance require these advanced techniques for
their proper elucidation. Furthermore, many of the important advances of the last
three decades would not have occurred, or would have been much slower in coming,
without their use. However, stochastic finance is rapidly evolving from its pure
science phase to its applied science and engineering phase. As a result, there is a
greater influx into the area of academics and practitioners who are neither “fluent”
nor even “comfortable™ with measure theoretic arguments and the formal style of
modern mathematics. It is to this audience that this book is addressed. Of course
the challenge in writing a book at a more intuitive level is to do so in a way that
is respectful of the many subtletics that the measure theoretic approach and more
formal mathematical approach have been developed to address. We have done our
best to meet this challenge: however, we are mindful of many shortcomings that
may still exist.

Another feature of the book is the set of problems that has been developed
to accompany each chapter. Here, we have tried to include exercises that cover
many of the key results and examples that have become significant in applications
or in subsequent theoretical developments. As we very firmly believe that a full
understanding of stochastic methods in finance can only be attained when one can
simulate and compute the quantities that one is discussing, we have also included a
number of computational exercises.

The evolution of our thinking about stochastic methods in finance has been
greatly assisted by John Van der Hoek of the University of South Australia and
our UTS colleague Eckhard Platen. They have been most generous in sharing their
knowledge both in private conversations and in courses which they have kindly
presented at UTS. We would also like to thank some of our former doctoral students,
in particular Nadima El-Hassan, Garry de Jager, Ramaprasad Bhar, Oh Kang Kwon,
Adam Kucera, Shenhuai Gao, Thuy Duong To and Andrew Ziogas. Numerous
discussions and debates with them over recent years have helped, if not them,
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then certainly ourselves to clarify a number of technical points discussed in this
book. Thanks are also due to Andrew Ziogas, Nicole Mingxi Huang and Hing
Hung for developing the MATLAB programs used to do the various simulations.
We are grateful to Mark Craddok and Boda Kang for checking through a number
of mathematical derivations and making some valuable suggestions. We are also
indebted to Simon Carlstedt for checking thoroughly through the book and pointed
out a number of errors and inconsistencies. Finally, we would like to acknowledge
the efforts of Xiaolin Miao, Yuping Wu, Jingfeng He, Xuli Huang, Lifang Zhang,
Jenny Yixin Chen, Shing-Yih Chai, Laura Santuz, Gwen Tran, Stephanie Ji-Won
Ough and Linh Thuy Té who have worked diligently and under much pressure to
prepare the various drafts and the many graphs. However, all of the aforementioned
persons should be totally absolved from any blame for any errors, omissions or
confusions that this book may still contain.

University of Technology Sydney Carl Chiarella
August 14, 2014 Xue-Zhong He
Christina Sklibosios Nikitopoulos
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Part I
The Fundamentals of Derivative Security
Pricing



