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Preface

In the last few years, concepts and methodologies initially developed in
theoretical physics have found high applicability in a number of very different areas.
This book, a result of cross-disciplinary interaction among physicists, biologists and
physicians, covers several topics where methods and approaches rooted in physics
are successfully applied to analyze and to model biomedical data. The volume
contains the papers presented at the International Workshop Modelling Bio-medical
Signals held at the Physics Department of the University of Bari, Italy, on
September 19-21th 2001. The workshop was gathered under the auspices of the
Center of Innovative Technologies for Signal Detection and Processing of the
University of Bari (TIRES Centre); the Organizing Committee of the Workshop
comprised L. Angelini, R. Bellotti, A. Federici, R. Giuliani. G. Gonnella, G.Nardulli
and S. Stramaglia. The workshop opened on September 19" 2001 with two
colloquia given by profs. N. Accomero (University of Rome, la Sapienza), on
Neural Networks and Neurosciences, and E. Marinari (University of Rome, la
Sapienza) on Physics and Biology. Around 70 scientists attended the workshop,
coming from different fields and disciplines. The large spectrum of competences
gathered in the workshop favored an intense and fruitful exchange of scientific
information and ideas. The topics discussed in the workshop include: decision
support systems in medical science; several analyses of physiological rhythms and
synchronization phenomena; biological neural networks; theoretical aspects of
artificial neural networks and their role in neural sciences and in the analysis of EEG
and Magnetic Resonance Imaging; gene expression patterns; the immune system;
protein folding and protein crystallography.

For the organization of the workshop and the publication of the present volume
we acknowledge financial support from the Italian Ministry of University and
Scientific Research (MURST) under the project (PRIN) “Theoretical Physics pf
Fundamental Interactions”, from the TIRES Centre, the Physics Department of the
University of Bari and from the Section of Bari of the Istituto Nazionale di Fisica
Nucleare (INFN). We also thank the Secretary of the Workshop, Mrs. Fausta
Cannillo and Mrs. Rosa Bitetti for their help in organizing the event.

Giuseppe Nardulli
Sebastiano Stramaglia
University of Bari
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ANALYSIS AND MODELS OF
BIOMEDICAL DATA BY THEORETICAL
PHYSICS METHODS






THE CLUSTER VARIATION METHOD FOR APPROXIMATE
REASONING IN MEDICAL DIAGNOSIS

H.J. KAPPEN
Laboratory of Biophysics, University of Nijmegen,
bert@mbfys. kun. nl

In this paper, we discuss the rule based and probabilistic approaches to computer
aided medical diagnosis. We conclude that the probabilistic approach is superior to
the rule based approach, but due to its intractability, it requires approximations for
large scale applications. Subsequently, we review the Cluster Variation Method and
derive a message passing scheme that is efficient for large directed and undirected
graphical models. When the method converges, it gives close to optimal results.

1 Introduction

Medical diagnosis is the a process, by which a doctor searches for the cause
(disease) that best explains the symptoms of a patient. The search process is
sequential, in the sense that patient symptoms suggest some initial tests to
be performed. Based on the outcome of these tests, a tentative hypothesis is
formulated about the possible cause(s). Based on this hypothesis, subsequent
tests are ordered to confirm or reject this hypothesis. The process may pro-
ceed in several iterations until the patient is finally diagnosed with sufficient
certainty and the cause of the symptoms is established.

A significant part of the diagnostic process is standardized in the form
of protocols. These are sets of rules that prescribe which tests to perform
and in which order, based on the patient symptoms and previous test results.
These rules form a decision tree, whose nodes are intermediate stages in the
diagnostic process and whose branches point to additional testing, depending
on the current test results. The protocols are defined in each country by a
committee of medical experts.

The use of computer programs to aid in the diagnostic process has been
a long term goal of research in artificial intelligence. Arguably, it is the most
typical application of artificial intelligence.

The different systems that have been developed so-far use a variety of
modeling approaches which can be roughly divided into two categories: rule-
_ based approaches with or without uncertainty and probabilistic methods. The
rule-based systems can be viewed as computer implementations of the pro-
tocols, as described above. They consist of a large data base of rules of the
form: A — B, meaning that ”if condition A is true, then perform action B”



or "if condition A is true, then condition B is also true”. The rules may be
deterministic, in which case they are always true, or 'fuzzy’ in which case they
are true to a (numerically specified) degree. Examples of such programs are
Meditel', Quick Medical Reference (QMR)?, DXplain®, and Tliad*.

In Berner et al.® a detailed study was reported that assesses the perfor-
mance of these systems. A panel of medical experts collected 110 patient
cases, and concensus was reached on the correct diagnosis for each of these
patients. For each disease, there typically exists a highly specific test that
will unambiguously identify the disease. Therefore, based on such complete
data, diagnosis is easy. A more challenging task was defined by removing this
defining test from each of the patient cases. The patient cases were presented
to the above 4 systems. Each system generated its own ordered list of most
likely diseases. In only 10-20 % of the cases, the correct diagnosis appeared
on the top of these lists and in approximately 50 % of the cases the correct
diagnosis appeared in the top 20 list. Many diagnoses that appeared in the
top 20 list were considered irrelevant by the experts. It was concluded that
these systems are not suitable for use in clinical practice.

There are two reasons for the poor performance of the rule based systems.
One is that the rules that need to be implemented are very complex in the
sense that the precondition 4 above is a conjunction of many factors. If each
of these factors can be true or false, there is a combinatoric explosion of con-
ditions that need to be described. It is difficult, if not impossible, to correctly
describe all these conditions. The second reason is that evidence is often not
deterministic (true or false) but rather probabilistic (likely or unlikely). The
above systems provide no principled approach for the combination of such
uncertain sources of information.

A very different approach is to use probability theory. In this case, one
does not model the decision tree directly, but instead models the relations
between diseases and symptoms in one large probability model. As a (too)
simplified example, consider a medical domain with a number of diseases
d = (di,...,dn) and a number of symptoms or findings f = (f1,...,fm)-
One estimates the probability of each of the diseases p(d;) as well as the
probability of each of the findings given a disease, p(f;|d;). If diseases are
independent, and if findings are conditionally independent given the disease,
the joint probability model is given by:

p(d, f) = p(d)p(f|d) = Hp ) [ p(f51d) (1)

It is now possible to compute the probability of a disease d;, given some



findings by using Bayes’ rule:

_ p(di, fr)
o(fe) ’

where f; is the list of findings that has been measured up to diagnostic itera-
tion t. Computing this for different d; gives the list of most probable diseases
given the current findings f; and provides the tentative diagnosis of the pa-
tient. Furthermore, one can compute which additional test is expected to be
most informative about any one of the diagnoses, say d;, by computing

Ly ==Y p(filfe) Y pldil fo, ;) logp(dil fi, £;)

fi d;

pldilft)

(2)

for each test j that has not been measured so-far. The test j that minimizes
I;; is the most informative test, since averaged over its possible outcomes, it
gives the distribution over d; with the lowest entropy.

Thus, one sees that whereas the rule based systems model the diagnos-
tic process directly, the probabilistic approach models the relations between
diseases and findings. The diagnostic decisions (which test to measure next)
is then computed from this model. The advantage of this latter approach
is that the model is much more transparent about the medical knowledge,
which facilitates maintenance (changing probability tables, adding diseases or
findings), as well as evaluation by external experts.

One of the main drawbacks of the probabilistic approach is that it is
intractable for large systems. The computation of marginal probabilities re-
quires summation over all other variables. For instance, in Eq. 2

p(fe) =Y d7,5p(d, f)
d,f

and the sum over d, f contains exponentially many terms. Therefore, prob-
abilistic models for medical diagnosis have been restricted to very small
domains®7 or when covering a large domain, at the expense of the level of
detail at which the disease areas are modeled®.

In order to make the probabilistic approach feasible for large applications
one therefore needs to make approximations. One can use Monte Carlo sam-
pling but one finds that accurate results require very many iterations. An
alternative is to use analytical approximations such as for instance mean field
theory®-!0. This approach works well for probability distributions that resem-
ble spin systems (so-called Boltzmann Machines) but, as we will see, they
perform poorly for directed probability distributions of the form Eq. 1.



2 The Cluster Variation Method

A very recent development is the application of the Cluster Variation method
(CVM) to probabilistic inference. CVM is a method that has been developed
in the physics community to approximately compute the properties of the Ising
model''. The CVM approximates the probability distribution by a number
of (overlapping) marginal distributions (clusters). The quality of the approx-
imation is determined by the size and number of clusters. When the clusters
consist, of only two variables, the method is known as the Bethe approxima-
tion. Recently, the method has been introduced by Yedidia et al.}? into the
machine learning community, showing that in the Bethe approximation, the
CVM solution coincides with the fixed points of the belief propagation algo-
rithm. Belief propagation is a message passing scheme, which is known to
yield exact inference in tree structured graphical models'®. However, BP can
can also give impressive results for graphs that are not trees'?.

Let z = (z1,...,Z,) be a set of variables, where each z; can take a finite
number of values. Consider a probability distribution on z of the form

I _u ~H
(@) = e H® 7 =Y e HE
Z(H) Z

It is well known, that py can be obtained as the minimum of the free energy,
which is a functional over probability distributions of the following form:

Fy(p) = (H) + (logp) , (3)

where the expectation value is taken with respect to the distribution p, i.e.
(H) =Y, p(z)H(x). When one minimizes Fj (p) with respect to p under the
constraint of normalization )__ p(z) = 1, one obtains py °.

Computing marginals of py such as pg(z;) or py(z;, ;) involves sums
over all states, which is intractable for large n. Therefore, one needs tractable
approximations to pg. The cluster variation method replaces the probability
distribution py(z) by a large number of (possibly overlapping) probability
distributions, each describing the interaction between a small number of vari-
ables. Due to the one-to-one correspondence between a probability distribu-
tion and the minima of a free energy we can define approximate probability
distributions by constructing approximate free energies and computing their
minimum (or minimal!). This is achieved by approximating Eq. 3 in terms of
the cluster probabilities. The solution is obtained by minimizing this approx-
imate free energy subject to normalization and consistency constraints.

%Minimizing the free energy can also be viewed as maximizing the entropy with an addi-
tional constraint on (H).



Define clusters as subsets of distinct variables: z4 = (z4,,...,%;,), with
1 < ij; <n. Define a set of clusters P that contain the interactions in H and
write H as a sum of these interactions:

H(z) = Hl(z.)

a€P

For instance for Boltzmann-Gibbs distributions, H(z) = } . wijziz; +
>.;0iz; and P consists of all pairs and all singletons: P = {a|a = (ij),i >
j or @« = (i)}. For directed graphical models with evidence, such as
Eq. 2, P is the set of clusters formed by each node ¢ and its parent set 7;:
P ={ala = (i,m;),i = 1,...,n}. z is the set of non-evidence variables (d in
this case) and Z = p(f;).

We now define a set of clusters B, that will determine our approximation
in the cluster variation method. B should at least contain the interactions in
p(z) in the following way:

VYae P= 3o’ € B,a Cd.

In addition, we demand that no two clusters in B contain each other:
a,a' € B= a ¢ o,a ¢ a. Clearly, the minimal choice for B is to chose
clusters from P itself. The maximal choice for B is the cliques obtained when
constructing the junction tree'®. In this case, the clusters in B form a tree
structure and the CVM method is exact. In general, one, can chose any set
of clusters B that satisfy the above definition. Since the proposed method
scales exponentially in the size of the clusters in B, the smaller the clusters
in B, the faster the approximation. For a simple directed graphical model an
intermediate choice of clusters is illustrated in Fig. 1.

Define a set of clusters M that consist of any intersection of a number of
clusters of B: M = {|f = Ngak,ar € B}, and define U = BU M. Once U
is given, we define numbers ag recursively by the Moebius formula

1= Y aa, VBEU

acU,adf

In particular, this shows that a, = 1 for a € B.
The Moebius formula allows us to rewrite interactions on potentials in P
in terms of interactions on clusters in U:

Hz)=Y Hi@s)=> Y auH@s) =) aaHa,

BeP BEP acU,aDpB acU



Figure 1. Directed graphical model consisting of 5 variables. Interactions are de-
fined on clusters in P = {(1),(1,2),(2,3),(1,4),(3,4,5)}. The clusters in B are de-
picted by the dashed lines (B = {(1,2,3),(2,3,5),(1,4,5),(3,4,5)}. The set M =
{(1).(2,3),(3),(5). (3,5)}

where we have defined H, as the sum of all interactions in 3 € P that are
contained in cluster a € U:

Ho(zo) = Z H[!x(xﬂ)
BEP,BCa

Since interactions may appear in multiple clusters, the constants a, ensure
that double counting is compensated for. ®* Thus, we can express (H) in Eq. 3
explicitly in terms of the cluster probabilities p, as

(H) = Z aq (Hq) = Z Qo ZHa(za)pcx(xa) (4)

acU acU ZTa

bIn the case of the Boltzmann distribution
H‘.' = H; = ;w5
H‘Tj = Wi TT;
Hi; = wijzizj + 0;zi + 6515

and a(;;) =1 and a;) =2 —n.



Whereas (H) can be written exactly in terms of p,, this is not the case
for the entropy term in Eq. 3. The approach is to decompose the entropy of
a cluster « in terms of 'connected entropies’ in the following way: ¢

Sa = —Zpa(xa)logpa(xa) = Z S;- (5)

Ta BCa

Such a decomposition can be made for any cluster. In particular it can be
made for the 'cluster’ consisting of all variables, so that we obtain

S=-Y p(z)logp(z) =Y _ S} (6)
z B

where 3 runs over all subsets of variables . The cluster variation method

approximates the total entropy by restricting this sum to only clusters in
U and re-expressing 5’23 in terms of S,, using the Moebius formula and the

definition Eq. 5.
SxY Sh= > 8.,5=) 6aSa (7)

BeU BEU aDp a€U

Since S, is a function of p, (Eq. 5) we have expressed the entropy in terms
of cluster probabilities p,.

The quality of this approximation is illustrated in Fig. 2. Note, that
the both the Bethe and Kikuchi approximation strongly deteriorate around
J = 1, which is where the spin-glass phase starts. For J < 1, the Kikuchi
approximation is superior to the Bethe approximation. Note, however, that
this figure only illustrates the quality of the truncations in Eq. 7 assuming that
the exact marginals are known. It does not say anything about the accuracy
of the approximate marginals using the approximate free energy.

Substituting Eqgs. 4 and 7 into the free energy Eq. 3 we obtain the ap-
proximate free energy of the Cluster Variation method. This free energy must
be minimized subject to normalization constraints ), pa(zs) =1 and con-
sistency constraints

Pa(z8) = ps(zs), BEM,a€B,fCa. (8)

Note, that we have excluded constraints between clusters in M. This is suf-
ficient because when 3,4 € M, 8 C ' and ' C @ € B: pa(zs) = pp(zs:)

¢This decomposition is similar to writing a correlation in terms of means and covariance.

For instance when a = (i), S(;) = S(fx.) is the usual mean field entropy and S(;j) = S:i) -
S(fj ) + S(t.j) defines two node correction.
On n variables this sum contains 2™ terms.
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Figure 2. Exact and approximate entropies for the fully connected Boltzmann-Gibbs dis-
tribution on n = 10 variables with random couplings (SK model) as a function of mean
coupling strength. Couplings w;; are chosen from a normal Gaussian distribution with mean
zero and standard deviation J/y/n. External fields 6; are chosen from a normal Gaussian
distribution with mean zero and standard deviation 0.1. The exact entropy is computed
from Eq. 6. The Bethe and Kikuchi approximations are computed using the approximate
entropy expression Eq. 7 with exact marginals and by choosing B as the set of all pairs and

all triplets, respectively.

and pa(z3) = pa(z) implies pg (z3) = pg(zp). In the following, a and S will
be from B and M respectively, unless otherwise stated €.
Adding Lagrange multipliers for the constraints we obtain the Cluster

Variation free energy:

Fevum({Pa(za)}s {Xa}s {Xap(2p)}) = Z Qa zpa(za) (Ha(Za) + logpa(za))

aclU ZTa
=D A [ Dopal@a) = 1) = 33" Aas(@s) (Palzs) — ps(s))
acU Ta a€lU BCa zp5

(9)

3 [Iterating Lagrange multipliers

Since the Moebius numbers can have arbitrary sign, Eq. 9 consists of a sum of
convex and concave terms, and therefore is a non-convex optimization prob-
lem. One can separate F.yy in a convex and concave term and derive an

¢In fact, additional constraints can be removed, when clusters in M contain subclusters in
M. See Kappen and Wiegerinck!6,



