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Preface

At the time of writing, there are over 170 high-voltage direct-current (HVDC) links installed
worldwide. The largest installations operate at +800 kV DC voltage and the highest DC current ratings
are over 4500 A. Although alternating current was the predominant method for transmitting electrical
energy in the twentieth century, HVDC was demonstrated to be the best solution for many specific
application areas and the number of installations per year has been constantly increasing at the
beginning of twenty-first century. Despite significant converter-station costs, HVDC is techno-
economically preferred in general applications for:

* long-distance, large-scale power transfer;

* subsea and long-distance cable-power transmission;

* interconnecting asynchronous AC systems or systems with different frequencies;

» controllable power transfer between different nodes in an electricity market or markets;
» AC grid-stability support, ancillary service provision and resilience to blackouts;

* connecting isolated systems like offshore wind farms or oil platforms.

DC transmission technology was used in many instances in very early power systems but modern
HVDC transmission begins with the 1954 Sweden—Gotland installation. This system and all the other
HVDCs commissioned until the mid-1970s were based on mercury arc valves. A significant technical
advance came with the introduction of solid-state valves (thyristors), although they only support the
line-commutated converter (LCC) concept. In the first decade of the twenty-first century there has
been very rapid development of fundamentally new technologies and an increasing demand for
HVDC technology. The introduction of voltage-source converters (VSCs) requires new valves, which
use insulated-gate bipolar transistors (IGBTs) and also new protection and control approaches. The
modular multilevel converters have eventually emerged as the most cost effective VSC converter
concept, which practically eliminates filtering needs with HVDC and removes voltage limits with
VSC valves.

In the second decade of the twenty-first century it has become apparent that DC transmission grids
are a technically feasible and viable solution to large-scale energy challenges. The primary application
drivers come from initiatives like the North Sea DC grid, Medtech, Desertec, the European overlay
super grid and Atlantic Wind. It is accepted that the DC transmission grids must have levels of reliabil-
ity and technical performance that are similar to or better than an AC transmission system. This level of
performance, security and reliability is technically feasible, although, in many aspects, DC grids will be
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substantially different from traditional AC systems. The development of DC grids brings significant
technical advances in HVDC technologies, in particular related to DC circuit breakers (CBs), DC/
DC converters and DC protection systems, and substantial further research and development are
anticipated.

Nowadays, HVDC and DC grids are associated with green energy, as facilitators of large-scale
renewable energy plants. This helps with public acceptance and image, and facilitates further
investments in large public projects. HVDC is perceived as the technology that avoids pylons by using
long underground cables, further strengthening arguments for future funding decisions.

The timing of this book is therefore in step with an increased interest in HVDC and a projected
significant increase in its use.

The book is organized in three parts in order to study all three major HVDC concepts — line
commutated HVDC, VSC HVDC and DC grids current research developments. Each part will review
theoretical concepts and analyse aspects of technology, interaction with AC grids, modelling, control,
faults and protection, with particular emphasis on practical implementation aspects and on reported
operational issues.

The technical field of HVDC transmission and DC grids straddles three major traditional electrical
engineering disciplines:

» Power transmission engineering. The impact of HVDC systems on the connecting AC transmission
systems and the national grid is of primary importance. The influence of AC systems on HVDC is also
of significance in terms of technical performance, stability, protection and power transfer security in
general. Harmonic interaction will be studied in some depth.

» Power electronics. Each HVDC link involves at least two AC/DC converters whereas DC grids will
have many more, including semiconductor DC CBs and DC/DC converters. These converters have
features that are similar to those of traditional low-power converters but many other unique require-
ments exist to develop valves and converter assemblies capable of sustaining up to 800kV and
perhaps over 4500 A. The protection of valves and converters is very important and is a defining
power electronics feature in HVDC.

* Control engineering. Modelling and simulation of HVDC is essential for design and operation and
several different modelling approaches exist, depending on the model application. In particular,
because of the high costs of HVDC testing and the consequences of any design issues, model accur-
acy and simulation speed play crucial role in the system design. The control systems for HVDC have
evolved into very complex technologies, which are always multivariable, nonlinear and with multiple
control layers.

The above three technical disciplines will be employed in this book in order to analyse all essential
technical aspects of HVDC and DC grids which is aimed to facilitate learning by researchers and engin-
eers who are interested in this field.

The material in this book includes contributions from many HVDC researchers and engineers and
it is developed from research projects funded by several research councils and private firms. More
importantly, the studies are inspired by and build on previous work by numerous great HVDC
engineers.

The authors are particularly grateful to ALSTOM Grid, UK, for providing their comprehensive
report, HVDC: Connecting to the Future, as well as to SIEMENS, Germany and ABB, Sweden, for
their HVDC photographs. We are also indebted to the researchers at the University of Aberdeen Power
Systems Group and, in particular, to Dr Weixing Lin, Dr Ali Jamshidifar, Dr Masood Hajian, Dr Huibin
Zhang and Dr Lu Zhang for their contributions.

We would like to give our special thanks to SSE, Scotland, and in particular to Andrew Robertson,
for their support for the HVDC course at University of Aberdeen, which provided important material
for this book.
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* Réseau de Transport d’Electricité, (RTE), France.
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