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Foreword

This volume is the proceedings of an advanced seminar conducted by
the Mathematics Research Center, United States Army. It was held at
the Wisconsin Center on the campus of the University of Wisconsin in
Madison, October 7-9, 1968.

The seminar was opened with words of welcome by Professor J.
Barkley Rosser, Director of the Mathematics Research Center. The
program was divided into five sessions, each session consisting of two
one-hour talks. The seminar was informally conducted, and the under-
signed, as chairman of the organizing committee, acted as chairman of
all the sessions.

This volume contains six articles, as two or more consecutive one-hour
talks have been combined into a single article in some instances. The
first article is a general introduction to spline functions. The second,
third and fifth articles are concerned primarily with applications, the
respective areas of application being initial value problems in ordinary
differential equations, approximation of functions, and boundary
value and eigenvalue problems. The fifth article, however, contains
also a theoretical section concerned with generalizations of spline
functions in several directions. The fourth describes numerical algo-
rithms for interpolation and approximation by spline functions, and
the sixth and last treats in some depth the intimate relationship be-
tween monosplines and quadrature formulae.

The organizing committee, chaired by the editor, included Professors
J. W. Jerome of Case Western Reserve University and L. L. Schumaker
of the University of Texas, who were visiting at the Mathematics
Research Center during the preceding year, and Professor I. J.
Schoenberg of the University of Wisconsin; Mrs. Gladys Moran served

vii



FOREWORD

ably as seminar secretary. The preparation of the manuscripts for pub-
lication was under the capable supervision of Mrs. Dorothy Bowar.
The editor wishes also to express his gratitude to the staff of
Academic Press, Inc.

The efforts of the speakers and all who worked toward the success ~f
the seminar are warmly appreciated.

Madison, Wisconsin T. N. E. Greville
December 1968
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Preface

Spline functions are a class of piecewise polynomial'fuhctions satisfy-
ing continuity properties only slightly less stringent than those of.
polynomials, and thus they are a natural generahzatlon of polynoml-
als. They are found to have highly desirable characteristics as approxi-

mating, interpolating, and curve-fitting functions. In fact, the solutions
of a number of simple optimization problems are spline functiors
and they are intimately related to the approximation of linear func-
tionals.

Though spline functions, without being so called, were used previous-

ly in a few isolated instances, they were named and singled out for
special study for the first time by-Schoenberg.in the middle 1940’s.

He has said that their fundamental properties are so smple and the
mathematics involved so elementary that it is remarkable they were
not discovered earlier. It is only in the 1960’s that they have attracted.
wide attention, but in recent years the literature in this area has pro-
liferated rapidly.

In 1968 a survey of the most interesting and useful available informa-
tion about spline functions would have required extensive literature
research, and some of the information wauld not have been found'in
a form very convement and access1ble for apphcatlon-onented users;

It was the purpose of the advanced seminar held in October 1968 ta
instruct Army mathematicians in the more fundamental aspects of the
theory and applications of spline functions. This volume mak_es the.
same information available to the general reader:

Madison, Wisconsin T. N. E. Greville:
December 1968
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Introduction to Splinc Functions

T.N. E. GREVILLE

1. Definition of spline function. Given a strictly increasing
sequence of real numbers, X,Xp,...,X,, a spline function
S(x) of degree m with the knots x},x,,...,x, is a function
defined on the entire real line having the following two prop-
erties.

(i) In each interval (x;,x;,;) for i =0,1,...,n
(where x5 = -0 and x4 = o), S(x) is dgiven by some poly-
nomial of degree m or less.

(il) S(x) and its derivatives of orders 1,2,...,m-l
are continuous everywhere.

Thus, a spline function is a piecewise polynomial
function satisfying certain conditions regarding continuity of
the function and its derivatives. When m =0, condition ( {i)
is not operative, and a spline function of degree 0 is a step
function. A spline function of degree 1 is a polygon.

While, in general, S(x) is given by different poly-
nomials in adjoining intervals (x;_j,x;) and (xj, xj41), the
definition does not require this. In a very special case, S(x)
might be given by & single polynomial on the entire real line.
In other words, the class 8p(xj,x,,...,Xp) of spline func-
tions of degree m having the knots xj,xp,...,x, includes
all polynomials of degree m or less.

For m >0, a spline function of degree m could
equally well be defined as a function in c™-1 whose m-th
derivative is a step function. Even more concisely, a spline
function of degree m is any m-th order indefinite integral of
a step function.

A spline is a mechanical device used by draftsmen
to draw a smooth curve consisting of a strip or rod of some
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flexible material to which weights are attached, so that it can
be constrained to pass through or near certain plotted points
on a graph. The term "spline function" (first used in [1]) is
intended to suggest that the graph of such a function is similar
to a curve drawn by a mechanical spline. Indeed, it has been
shown [1, p. 67] that, to a first order of approximation, the
curve produced. by a spline i3 a cubic (1i.e., third-degree)
spiine function.
' Some writers use ''spline' as a synonym for ""'spline
funct1on” and we ‘shall sometimes do so.

2. Usefulness of spline functions. Polynomials have long
been the functions most widely used to approximate other func-
- tions, mainly because they have the simplest mathematical
properties. However, it is a common observation that a poly-
nomial of moderately high degree fitted to a fairly large number
' of given data points tends to exhibit more numerous, and more
severe undulations than.a curve drawn with a spline or a
French curve. There is now considerable evidence that in
many circumstances a spline function is a more adaptable ap-
-proximating function than a pclynomial involving a comparable
number of parameéters. This conclusion is based in part on
actual numerical experience, and in part on mathematical dem-
onstratlons that the solutions of a variety of problems of
best' approximation actually turn out to be spline functions.
‘Examples of both kinds of evidence will be found in the arti-
cles in this volume. ‘Also indicated will be applications of
spline functions as interpolating functions, as approximating
functions, ih approximating linear functionals, especially
definite integrals, and as approximations to solutions of
ordinary differential equations.

f3. ‘Representation by truncated power functlon A partic-
ularly simple type of spline function is the truncated power

function x-'_n,. defined by

X (x >0)

0 (x <0)

For m =0 this is the well known Heaviside function.
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It is easily seen ( see [ 2]) that any function

S e Sm(xl,xz, ce ey Xp) has a uniqure1 representation of the form
m
(3.1) S(x) =p(x) + ), oflx = x0T,

where pE€ T- Here m; denotes the class of polynomials of
degree m or less. The representation (3.1) was first given
in [3].

4. Natural splines. A spline s(x) of odd degree 2k -1
with the knots X|»Xp, .-+ ,X_ is called a natural spline if it
is given in each of she two intervals (-, x) s(xp, ©) by
some polynomial of degree k-1 (rather than 2k-l) or less
(in general, not the same polynomial in the two intervals).
It is a matter of simple algebra to show [2,4] that s is a
natural spline of degree 2k-1 with the indicated knots if and
only if the representation ( 3.1) assumes the form

n

2k-1
(4.1) s(x) =p(x) + ), c(x -x) (pem )
j=1 j i+ k-1
and the coefficients cj satisfy the relations
' n
(4.2) chxr=0 (r=0,1,...,k~1).
2
We shall denote by Nop (%), %x5,... »X,) the class

of natural splines of degree 2k-I having the knots Xy Xp,
-yXn - Evidently this class contains T -

5. Spline integration formula. Hereafter we shall often be
concerned with integrals in which a spline function appears
as a kernel function. The following lemma facilitates the
evaluation of such integrals. In this connection, the reader
will note that it follows from the definition of a spline fuhc-
tion that the derivative of a spline function of degree greatel
than zero is a spline function of the next lower degree with
the same knots. Consequently, k-fold differentiation of a
spline of degree k or more reduces the degree by k.

Lemma 5.1. Let S be given by (3. 1) with m = 2k-],

where
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(5.1) a5_x1<x2<...<xn§b,
and let f be a function having the following properties.

(i) fe Ck-l[a, b] and f( k) is continuous in each
open interval (xi,xi“), i=0,1,...,n, with x5 =a and

Xn+l = b, when appropriate.

() 5T ) s (420 (r20,1,.. k-2 x =a, b).

(2k-1) (2k-1)

(iii) f(a)s (a-0) =f(b)S (b+0) =0.

Then, n
(5.2 [P 8™ (%) ax = (- 2k-1) 10, € fx) -

Proof. By successive integration by parts, we have

k-2
(5.3) f;f( k)(x) S( k)(x)dx - Z ( —l)r[f( k-r—l)( b) S( k+r)( b)
r=0
gt k—r—l)( a)S( k+r)(a) 1+ ( ‘l)k—lfabf'(x) X Zk—l)(x)dx.

The summation in the right member of ( 5. 3) vanishes because
of property (ii). Since sl 2k=1) ¢ a step function with the
same knots as S, the integral in the right member of ( 5. 3)
is a sum of integrals of the form

Xi+l '
(5.4 m fxi B(x) dx =n [Hx,,)-Kx)],

where n; is the constant value of st 2k-1) p (x4, %X441) -
Summing the right member of ( 5. 4) with respect to i and
rearranging terms gives

n
(5.5) .Zlf(xi)[s( Zk'”(xi—O) - g Zk"l)(xi+0)]
i=

+ 1(0) s 2D (1p40) ~g(a) ¢ 27V (a-0) .
Now, the last two terms of ( 5. 5) vanish by property ( iif),
while successive differentiation of ( 3. 1) gives

(5. 6) S( 2k-1) (2k-1)

(xi+0) -5 (xi-O) =(2k-1)! ¢

(i=l,2,...,n) .
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In view of (5.5) and (5. 6), (5.3) reduces to (5. 2).

It may be remarked parenthetically that (5. 2) is a
particular case of a well known result in the theory of distri-
butions of L. Schwartz ( see formula (II, 2; 8), Tome I, p.
38, of [5]).

Corollary 5. 2. If, in addition to the hypotheses of
Lemma 5.1, f vanishes at every knot of S, then

jdbf(k’(x) S(k)(x) dx =0 .

Corollary 5.3.  Let (5.1) hold, let s be a natural
spline given by (4.1) with k >1, andlet fe cKk"1[a, b] be
such that k) is continuous in each interval (xi,xiﬂ),
i=0,1,...,n with x5 =a and Xn4] = P, when appropriate.
Then

b n
L8900 ™0 ax = (-n*ae-nr ) e fx)
’ i=] 1 1

If, in addition, f vanishes at every knot of S,
b
L8900 s (%) ax =0

Proof. Since se¢ Nop -] (xl,xz, . «.yXp), it follows
that s(k) is a spline of degree k-1 that vanishes identi-
cally for x <x; and for x >x, . Consequently, conditions
(ii) and (iii) of Lemma 5.1 are fulfilled, and the first con-
clusion follows. The last statement is a consequence of
Corollary 5. 2.

6. Uniqueness of interpolation by natural splines. We shall
now show that for a given set of n data points

(6.1) (xl,yl), (xz,yz),---,(xn,yn)

with distinct abscissas there is, if 1 <k <n, a unique
s €n(x),xp,...,xp) that interpolates the given data points.
In the proof we shall use the following lemma.

Lemma 6.1. If a function g vanishes for n >k
distinct arguments and g is identically zero, then g is
identically zero.
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Proof. Clearly ge m._;, and the conclusion follows.

Theorem 6.2. If 1<k <n and the abscissas X)Xy,
... ,Xp are distinct, there is a unique se€ hyp_( XI’XZg"’Xn)
that interpolates the data points { 6.1). ’

Proof. Clearly there is no loss of generality in assum-
ing that (5.1) holds.

The statement that s interpolates the points ( 6.1) is
tantamount to the assertion that the relations

(6. 2) s(xi)=yi (i=12,...,n)

are satisfied. Expression (4.1l) contains a total of n+k co-
efficients, and substitution of this expression, with x =Xy,
in the left member of ( 6. 2) gives n linear equations in these
coefficients, while (4. 2) provides k further linear equations.
The theorem will be proved if it can be shown that the overall
linear system is nonsingular.

Now, this will be established if it can be shown that
the corresponding homogeneous system has only the trival so-
lution in which all n + k coefficients vanish. In other words,

we need only show that the only S € nok-1xy, %2, ... yXp)
that interpolates the data points
(6.3) (xl,O), (xz,O),...,(xn,O)

is the trivial one that is identically zero everywhere. To prove
this let Sg be a natural spline with the required properties,
and consider the integral of Sg) given by

o('s,) =fab[so(k)(x)]2dx.

By Corollary 5. 3, identifying both f and s with Sg, we
conclude that o Sg) =0. By the definition of of Sg), this
clearly implies that so( k) vanishes identically. Conse -
quently, by Lemma 6. I, sg is identically zero, as required.

7. The smoothest interpolation problem. Consider the prob-
lem of finding the smoothest interpolating function g for the
n data peints ( 6. 1), where by "smoothest" we mean that the
integral

(7.1) 9 = P16 (%)% x
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is minimized, with k >1. We shall consider only interpo-
lating functions g € CK~![a, b] such that g{kK) is piece~
wise continuous. (This condition can be weakened somewhat;
see [6])

If k =n, it is well known that there is a unique poly-
nomial IL(x) of degree k-1 that interpolates the points
(6.1). This is given by Lagrange's formula [ 7]

n P.(x)
Lx) = _J_P(X)Yj )

1=1 i
where

P(x) =(x —xl)(x ~x2)...(x —xn) ,

and P.(x) is the product obtained by deleting the factor

x -x.  from P(x) . For g=L, (7.1) gives ¢ =0, which
is evidently its smallest possible value Conversely, o =0
implies that g is in m._;, and L is known to be the unique
interpolating function of this class.

The case k >n is not interesting, as there is then
an infinite set of interpolating polynomials in )] -

We shall show that for k < n there is a unique smooth-
est interpolating function, which is, in fact, precisely the
interpolating natural spline of degree 2k-1 having the abscis-
sas of the given data points as knots, whose existence is
guaranteed by Theorem 6. 2. For k =2, this was first shown
by J. C. Holladay [ 8], and for the general case by C. de Boor
[9] and I.]. Schoenberg [ 6]. Corollary 7. 2 below will be
used in the proof. Lemma 7.1, which precedes it, will be
needed subsequently.

Lemma 7.1. Let f;,f, be piecewise continuous and
such that

(7.2) fab £(x) £,(x) & =0,
and let
(7.3) f=f+f,
and
b 2
(7.4) p9) = [Jlalx)] “ax  (geLy(a,b).
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Then
(7.5) p(1) <plD),
with equality only if f =f1 at all points of continuity of 5.
Proof. In viewof (7.2), (7.3) and (7.4),
plf) =p(f) + p£,).

Since p{g) >0 forany g, (7.5) follows at once. Equality
holds in (7. 5) only if p(fy) =0. But this implies f5=0 at
all points of continuity, and consequently f =f; at such points.

Corollary 7.2. Let f,f, ¢ ck-1a, b] have piecewise
continuous k-th derivatives such that

PPet ¥ ) £ (x) a =0,

and let f; vanish for n >k distinct arguments in [a, b].
Let f be defined by (7.3), and o(g) by (7.1) forany g.
Then

(7.6) o(f) <ol ,

with equality only if f =f.

Proof. Inequality (7. 6) follows immediately from
Lemma 7.1, with fl( k), fz( k) R £(k) assuming the roles of
f1,f5, f in that lemma. If equality holds in (7. 6), then, by the
continuity of f{k-1) ,f(K)(x)=0. By Lemma 6. 1, £,(x)=0,
and so f = fl .

Theorem 7.3. Let (5.1) hold, let k satisfy 1<k
<n, and let s be the unique natural spline interpolating
function for the data points ( 6.1) given by Theorem 6.2. Let
f be any interpolating function for the points ( 6.1) such that
fe ck-lf a, b], and fk) is piecewise continuous. Then

o(s) <a(f)
with equality only if f = s .

Proof. Applying Corollary 5.3 and identifying f
with f - s, we conclude that

(7.7 f; s G 1 s - s () Jax =0

8
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We next apply Corollary 7. 2, identifying f; with s
and f; with f - s. In view of (7.7), the hypotheses of the
corollary are satisfied. The conclusion of the theorem follows
at once.

The preceding proof parallels closely the proofs given
by de Boor [9] and Schoenberg [ 6]. This completes the solu-
tion of the smoothest interpolation problem for the case k <n,

"except for the numerical determination of the parameters of the

smoothest interpolating spline s, which will be considered
later.

It is easily seen that for k =1 the smoothest interpo-
lating function amounts to joining each pair of consecutive
data points by a straight line and using the familiar straight-
line interpolation.

8. Peano's theorem. We shall now see that the theorem of
unique natural spline interpolation ( Theorem 6. 2) has an
intimate relationship to approximation of linear functionals.
Probably the most important mathematical tool for studying
such approximations in a theorem due to G. Peano [10-12].
In order to state Peano's theorem, we shall need to describe
precisely the class of linear functionals we are going to con-
sider. Following [12], we choose the class defined by

(8.1) 3f = f;[aO(X)f(x)+a1(x)f'(x)+. ..+am(x)f(m)(x) Jax
g i im "
+i§ biof(xio) +i;1 bilft(xﬁ)-t». .. +i§ bimf( (xim) .

where the functions aj( x) are piecewise continuous over
[a, b] and the abscissas xy; are in [a, b]. While this is not
the most general class of functionals that might be considered,
it is adequate for most purposes. Evidently included as parti-
cular cases are (i) the integral of f over [a, b] or any sub-
interval, (1ii) the r-th derivative of f evaluated for x =t ,
where £ € [a,b] and 0 <r<m, and (iii) any linear
combination of ordinates of f with abscissas in [a, b] .

We shall say that ¥ annihilates f if 3f =0 .

Peano's theorem. Let 3 be a linear functional of the
form ( 8.1) that annihilates all polynomials of degree m or



