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PREFACE

Gravity-gradient and magnetic-gradient inversion equations are combined
to estimate the orientation and distance of an underwater object. The CKF
algorithm based on EMMAF algorithm and Spherical-Radial is proposed and
is applied to the fault diagnosis of slaver AUV in multi AUV collaborative
positioning system. Simulation results are used to analyze the advantages and
disadvantages of the three algorithms. This book looks at how a Service-
Oriented Agent Architecture (SOAA) for marine robots is endowed with
resilient capabilities in order to build a robust (fault-tolerant) vehicle control
approach. Particular attention is paid to cognitive RCAs based on agent
technologies and any other smart solution already applied or potentially
applicable to UMVs. The book also presents current and future trends of
RCAs for UMVs.

Chapter 1 - A geophysical inversion information based underwater object
detection method is proposed by using the joint Gravity-Gradient and
Magnetic-Gradient Inversion algorithms. The gravity-gradient and magnetic-
gradient inversion equations are combined to estimate the orientation and
distance of the underwater object. After calculating the relative positions of
underwater object from the gravity-gradient inversion equations and magnetic-
gradient inversion equations, the BP Neural Network is exploited to obtain an
optimal geophysical inversion equation applied to underwater object detection.
A typical three layered neural network of 6 input and 3 output neurons with a
single hidden layer is constructed to realize information fusion. The leading
characteristics of such neural network are strong parallel computing, learning
and adaptive capabilities, as well as good fault-tolerance. With the proposed
method, the trajectories of an underwater object can be detected accurately.
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Simulation results show that the authors’ method is more efficient than the
joint gravity-gradient and magnetic-gradient inversion methods.

Chapter 2 - This chapter introduces the traditional MMAE fault diagnosis
algorithm, and illustrates its defects, EMMAEKF can make up its defects, but
the EKF algorithm is a sub optimal biased estimate, and for some nonlinear
systems, it is difficult to calculate the Jacobian matrix, and in the high
dimensional case, the accuracy of UKF is lower. In this chapter, the CKF
algorithm based on EMMAF algorithm and Spherical-Radial is proposed and
is applied to the fault diagnosis of slaver AUV in multi AUV collaborative
positioning system. And simulation results are used to analyze the advantages
and disadvantages of the three algorithms.

This chapter introduces the traditional EIMM-CKF fault diagnosis
algorithm, and for the system without an accurate model, the filtering accuracy
of the system is low and even filter divergence, a EIMM-STCKEF algorithm is
proposed to diagnose the fault of slaver AUV in multi AUV collaborative
positioning system, and the EIMM-MSTCKF algorithm is proposed for the
fault diagnosis of slaver AUV in the collaborative positioning of AUV in order
to improve the positioning accuracy, the simulation results are used to analyze
the advantages and disadvantages of the three algorithms.

Chapter 3 - State-of-the-art technologies for ocean engineering are
currently based on autonomous solutions to tackle more complex maritime
missions by means of adaptation capabilities. This chapter presents how a
Service-Oriented Agent Architecture (SOAA) for marine robots is endowed
with resilient capabilities in order to build a robust (fault-tolerant) vehicle
control approach. The SOAA is based on two Information Technology (IT)
paradigms for modern computing systems: service-oriented architecture and
agent technology. The former mainly provides flexibility for dynamic
reconfiguration. The latter particularly provides intelligent autonomy based on
knowledge representation for situation awareness. This architectural approach
moves away from fixed mission plans and very basic diagnostics schemes. It is
able to handle unexpected faults at vehicle, sensor and sensor processing levels
based on either hardware failure or environmental changes. This chapter
provides a description of methods for on-board diagnosis and mitigation of
faults. The operation context, and fault cases from different scenarios are
presented. Remarking conclusions and future research work are also discussed.

Chapter 4 - The state of the art of Robotic Control Architectures (RCAs)
presented in this Chapter not only focuses on ocean engineering but also takes
into account other robotics areas that can strongly contribute to RCAs for
Unmanned Marine Vehicles (UMVs). Particular attention is paid to cognitive
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RCAs based on agent technologies and any other smart solution already
applied or potentially applicable to UMVs. The justification of this survey
direction is underpinned by the relevance of these architectural approaches in
the late years. Addressing the above context, two main classifications for
RCAs can be made: (1) situation awareness and autonomy, and (2) number of
autonomous computing units. The former is for those approaches that
rigorously follow an intelligent autonomy architecture, and in particular those
which really propose autonomous RCAs. The latter is according to the amount
of agents or self-governed entities implemented per UMV or team of UMVs.
The main aspects of interest discussed in this chapter are linked to the support
from the RCAs reviewed for: intelligent autonomy, computing paradigm, and
technology development. This chapter also presents current and future trends
of RCAs for UMVs.
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Chapter 1

UNDERWATER OBJECT DETECTION
BASED ON GEOPHYSICAL
INVERSION INFORMATION

Ying Weng"®, PhD and Meng Wu?, PhD
'School of Computer Science, Bangor University, Bangor, Gwynedd, UK
2School of Remote Sensing and Information Engineering,
Wuhan University, Wuhan, Hubei, China

ABSTRACT

A geophysical inversion information based underwater object
detection method is proposed by using the joint Gravity-Gradient and
Magnetic-Gradient Inversion algorithms. The gravity-gradient and
magnetic-gradient inversion equations are combined to estimate the
orientation and distance of the underwater object. After calculating the
relative positions of underwater object from the gravity-gradient
inversion equations and magnetic-gradient inversion equations, the BP
Neural Network is exploited to obtain an optimal geophysical inversion
equation applied to underwater object detection. A typical three layered
neural network of 6 input and 3 output neurons with a single hidden layer
is constructed to realize information fusion. The leading characteristics of
such neural network are strong parallel computing, learning and adaptive
capabilities, as well as good fault-tolerance. With the proposed method,
the trajectories of an underwater object can be detected accurately.

* Corresponding Author: y.weng @bangor.ac.uk.
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Simulation results show that our method is more efficient than the joint
gravity-gradient and magnetic-gradient inversion methods.

Keywords: magnetic gradient inversion, gravity gradient inversion,
underwater object detection, BP neural network

1. UNDERWATER OBJECT DETECTION BASED ON
GRAVITY GRADIENT

This section describes the automated gravity gradient tensor inversion
algorithm (AGGTI). The algorithm considers and combines full-tensor gravity
gradient components. With this algorithm, the mass and center location of an
object with an arbitrary shape and density can be quantified simultaneously
using the gravity gradient anomalies induced by the object, which is useful to
gain new information about the object. Unlike radar, laser and sonar, the
gravity gradiometer cannot be easily detected and interfered with due to the
covertness of the submarine. The submarine does not need to float near the
surface. AGTI algorithm is applied to a complicated model of an abnormal
object with measurement errors and interference from the near smaller illusive
object. Experimental results show that the method is convenient for
implementation and works well even if the data contain errors and
interference.

1.1. Mathematical Foundation

The gravity anomaly at the field point P (x, Y, Z) caused by an object can

be described as:

- H(é’ﬂ’ ;)p(gsﬂ’g)(;_z)
Ag(x’y)“Gm[(.f—x)z+(n—y)2+(¢-z)2]”2dﬁd"dg (L.1)

=G[[ [T(q)p(9)K (p.q)dédnd¢

where (f, A% ) is the positional coordinates of the object. I1(£,7,¢) is the

geometrical function determined by the object’s boundai'y. The value of the
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function is 1 if the object is on the boundary; otherwise, the value of the
function is 0. p(&,7,4) is the density contrast distribution function. The
geometrical and physical parameters of the object can be acquired by
I1(&,n,4) and p(&,7,4) . G is the universal gravitational constant [4].

The underwater object detection technology based on gravity gradient
considers the object as a 3D body with density contrast and the object
detection as gravity gradient inversion. Therefore, the problem is converted
into the gravity gradient inversion of the object’s geometrical and physical
parameters. Figure 1.1 shows the Cartesian reference frame used to specify the
source and field points [4, 6].

Z
e P(x,y,2)
b /
........... e
b 5 m= mass
>
i :
< [P s W
TR A S 3
£ ar X

Figure 1.1. Cartesian Reference Frame used to Specify Source and Field Points.

The x - y plane is taken as horizontal axes and the z-axis as vertical. The
increasing value of z represents the increasing height. If a particle with its

mass m is at the point o(&,77,¢) and O, is a assigned value for its density, the
gravitational potential @ at the field point P(£,7,¢) caused by the object (the

inertial centrifugal force is negligible here) can be described as the gravity
potential @ at the field point P(x,y,z) (the inertial centrifugal force is

negligible here). The operation can be described as following equations [4, 5]:
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P et S (1.2)
r JE=x +@-y) +(c—2)
o® (c—2)

e 2 2 27372 (1.3)
Oz e v (n=y)+c<2z)]

O0_ o 2As—2)'—(e=x)'~(1-y)"
& S 2 2 29572
oz [(6=x)"+(n-y)" +(5-2)’]

(1.4)

By differentiating @ with respect to x, y and z, it is possible to derive the
six components of the gravity gradient tensor [4].

2(e—x)’-(m-y)’ —({ -2)’
I, =G Sdednd 1.5
# III[(€—X)2+(7]—y)2+(é'—z)2]5/2 dedndg (1.5)

> Wiyy (e ~ (-2
I“W—GJ.J._[[(g_x)z+(77_y)2+(é,__z)2]5,25,-d8d77d{ (1.6)

3(e—x)(m~-y)
Iy=G Sdednd 7
o III[(E—x)Z+(77—y)2+(§—z)2]5/2 dedndd (1.7)

3(e—x)¢—-2)
Bi3G o dednd (1.8)
g jjj[(g_x)2+(n_y)2 +(4«_z)2]5/2 ,agarn é’

3(n—y)$ —2)
r,=6 Sdednd 1.9
" IIJ[(S—X)Z+(77—y)2+(§—z)2]5/2 dedndg (1.9)

If the distance between the object and the field point is long enough to
ignore the size of the object, Eq. (1.5) - Eq. (1.9) can be written as:
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| =
I (x,7,2)= GM 2%:2.2)) R

3(Ay(x,y,2))* - R
r, o,yz2)=GM 5

3(Az(x, y,2))* - R?
2 (1.10)
T, (x,y,z)=GM ke ¥ ’;)SAJ’(X’% z)
3Ax(x, y,2)Az(x, y,2)
RS
3Ay(x,y,z)Az(x,y,z)
5

r,(x,y,z2)=GM

I, (x,y,z2)=GM

L, (xy,2)=GM

where M is the mass of the object, and R is the distance calculated by the

formula R = (Ax(x, y,2))* + (AV(x, y, 2))* +(Az(x, , 2))°
Combining sub equations of Eq. (1.10), the orientation of the object can
be calculated as follows [4, 12]:

Az(x,y,2) | 1
O(x,y,z) = DTy o
e S R(x,y,z) 3 aTCCOS‘](l-Xy(x,y,Z))z +(FXJ'(J€’—V?Z))2 e o ¢ B L 1
r,(xyz2) T.(x»2)
—arctan(YEXDy _ oo L5 0:2)
@(x, y,z) = arctan( Az(x,y,z))—amtan(l“x:(x,y,z))
[ GM . 3 (1.12)

R(x,y,2) =

3P (%.7,2) +l"»,(x,y,z)( (l"xy(x,y,z))2 +(l"xy(x,y,z))2 =
I'.(xy2) T.(x2)

1.2. Simulation Experiments and Results

In building a simulation model, many cubic blocks are stacked together to
create a large 3D object. Each cube is 1m? in size and assigned a value for its
density. This creates a 3D model of the object with realistic features [4].
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Figure 1.2. Modeling 3D Cube Blocks.

Figure 1.2 shows the 3D cube blocks modeling and Table 1.1 gives
the size and density contrast values assigned to the object units. The mass
distribution of the object is symmetrically assumed to ensure that the density
contrast is constantly distributed, rather than spatially.

Table 1.1. Geometrical and Physical Parameters of the Model

Length (m) | Height (m) | Width (m) | Mass (t) Density contrast (t/m?)
35.0 10.0 25.0 70.0 0.0311

If the object is in its resting state, the gravity gradient tensor responses on
the measurement plane can be measured by a gravity gradiometer which is
carried on an autonomous underwater vehicle (AUV). In the survey area, as
the AUV moves, the data are acquired at every survey point which is spaced
Im along both x and y orientations. As a result, the bigger the survey area is,
the more data are acquired. Table 1.2 shows the influence of the survey area
on the estimation of the object’s mass.

It can be seen that the bigger the survey area is, the more accurate the
mass estimation is. We can acquire the mass’ magnitude with much smaller
survey area. Therefore, the detection may be predigested [4, 6].

The estimated track of the object is described in Figure 1.3 in pentagrams.
Statistically, the average distance between the object actual position and
gravity gradiometer is 192.17m, with 48.57% estimation error of object mass.
The average estimation error of the track in the x-direction and y-direction is
18.89% and 18.01%, respectively [4].
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Table 1.2. Influences of the Survey Area on the Estimation

of the Mass of the Object

Survey area (m?) Estimation of Mass (t)
64*64 3.694
128*128 16.686
192*192 28.384
256*256 36.622
384*384 46.530
512%512 52.043
768*768 57.849
1024*1024 60.838
1536*%1536 63.868
2048*2048 65.394
3072*3072 66.926
4096*4096 67.694

300 : . c e e

: —— Actual track
290.- % Estimated track
+  Position of gradiometer
— Estimated orientations
280 ey
270}~ -
E
>

260 |-

2501~

240 - & -

230" e \ 2 r r

0 50 100 150 200 250 300
x/m

Figure 1.3. Object Track Estimation [4].
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[+ Estimated Trajectory of Underwater Object by Gravity-Gradient Inversion
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Figure 1.4. Comparison based on Gravity Gradient Inversion method in 3D Space.

From Figure 1.4, the actual trajectory of underwater object is depicted
with a trajectory described as red dots, and the green line is to illustrate the
estimated trajectory of underwater object by gravity gradient inversion. It is
clearly seen that errors arise from terrain fluctuation in underwater
environment.

1.3. Summary of Gravity Gradient Inversion Method

This section proposes an underwater object detection method based on
gravity gradient. The gravity gradient anomalies caused by the object can be
measured by a gravity gradiometer on an AUV. It can be inversed to obtain the
object’s estimated mass and center coordinate my research attempts to
investigate the feasibility of this technology. Simulation results show that the
orientation could be calculated via the gravity gradient inversion algorithm
based on the assumption that the density contrast is constant and an object’s
mass has been estimated. Furthermore, this technology could be applied in
obstacle avoidance in underwater navigation in the future.



