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Preface

Silicon technology continues to progress, but device scaling is rapidly
taking the metal oxide semiconductor field-effect transistor (MOSFET) to its
limit. When MOS technology was developed.in the 1960’s, channel lengths
were about 10 micrometers, but researchers are now building transistors with
channel lengths of less than 10 nanometers. New kinds of transistors and
other devices are also being explored. Nanoscale MOSFET engineering
continues, however, to be dominated by concepts and approaches originally
developed to treat microscale devices. To push MOSFETS to their limits and
to explore devices that may complement or even supplant them, a clear
understanding of device physics at the nano/molecular scale will be essential.
Our objective is to provide engineers and scientists with that understanding ~
not only of nano-devices, but also of the considerations that ultimately
determine system performance. It is likely that nanoelectronics will involve
much more than making smaller and different transistors, but nanoscale
transistors provides a specific, clear context in which to address some broad
issues and is, therefore, our focus in this monograph.

This monograph was written for engineers and scientists who are
engaged in work on nanoscale electronic devices. Familiarity with basic
semiconductor physics and electronics is assumed. Chapter 1 reviews some
central concepts, and Chapter 2 summarizes the essentials of traditional
semiconductor transistors, digital circuits, and systems. This material
provides a baseline against which new devices can be assessed. At the same
time, it defines the requirements of a device for it to be useful in a digital
electronic system. Chapter 3 presents a nontraditional view of the ballistic
MOSFET. By treating a traditional device from a fresh perspective, this
chapter introduces electrical engineers to new ways of thinking about small
electronic devices. In Chapter 4, we extend the model to discuss the physics
of scattering in nanotransistors. Chapter 5 uses the same, general approach
to treat semiconductor nanowire and carbon nanotube FETs. Finally, in
Chapter 6, we introduce a ‘bottom-up’ view by discussing electronic
conduction in molecules and showing how a simple model for conduction in
molecules can also be applied to derive the results of the previous chapters.
We also identify the limitations of the approach by discussing a structurally
similar, but much different device, the single electron transistor.

We are grateful to numerous colleagues who have been generous in
sharing their insights and understanding with us. There are too many to
thank individually, but one person stands out - our colleague, Supriyo Datta,
whose simple and elegant understanding of nano-devices provided the
inspiration for this monograph.
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1.1 Introduction

This chapter is a review of (or introduction to) some key concepts that
will be needed as we examine nanotransistors. For the most part, concepts
will be stated, not derived. A thorough introduction to these concepts can be
found in Datta [1.1]. We also assume that the reader is acquainted with the
basics of semiconductor physics (as discussed, for example, in [1.2]). For °
the quantum mechanical underpinning, see Datta [1.3] and for a more
extensive discussion of semiclassical transport theory, see Lundstrom [1.4].

1.2 Distribution Functions

In equilibrium, the probability that a state at energy, E, is occupied is
given by the Fermi function as

1
:ﬁ)=m, (1.1)



2 Chapter 1
where the subscript, 0, reminds us that the Fermi function is defined in
equilibrium, and 7} is the lattice temperature. When states in the conduction
band are located well above the Fermi level, the semiconductor is
nondegenerate and eqn. (1.1) can be approximated as

/") ze(EF"E)“'BTL . (12)

By writing the energy as the sum of potential and kinetic energies,

E=Ec +-;m'vz, (1.3)

where E is the bottom of the conduction band, eqn. (1.2) can be written as

- 2 T, 2
A x e ErECV T, om0 2T, om0 12k T, (1.4)

where C is a constant. Equation (1.4) states that in a nondegenerate
semiconductor, the carrier velocities are distributed in a Gaussian (or
Maxwellian) distribution with the spread of the distribution related to the
temperature of the carriers. Since v? = v? +v2 +v?, we can also write

f(‘) zCvle--m.u_f/ZkBTL , (15)

which shows that the carrier velocities are distributed symmetrically about
the x-axis (or for that matter, the y- and z-axes). The average velocity of the
entire distribution is zero. Figure 1.1 is a sketch of a Maxwellian velocity
distribution.

J(v)

fo e-)/zm’u}/k,n

- |+

Ue

Figure 1.1 Tiustration of a Maxwellian velocity distribution. At equilibrium, the
distribution is symmetric and centered at v, = 0, so the average velocity is zero.
The spread of the distribution is related to the temperature.
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1.3 Three, Two, and One-Dimensional Carriers

Within an effective mass description, the wave function for electrons in a
semiconductor is obtained by solving the Schrédinger equation,

hZ
R V() + U(r)w(r)= Ep(r). (1.6)

If the potential energy, U(r), is constant, the solutions are plane waves

W(r) = ™, (1.72)

JQ

where (2 is a normalization volume.

Consider next electrons in a thin slab as shown in Fig. 1.2. These
electrons are confined in the z-direction, but they are free to move in the x-y
plane. The wave function of these quasi-two-dimensional electrons is found
by solving eqn. (1.6) using separation of variables to find

W) = 4(2) W(x,y) = 42) —Jl—;e‘“'“*’” = 9(2) %e“‘"", (1.7)

where A4 is a normalization area and p is a vector in the x-y plane. If the
confining potential is a simple, square well with infinite barriers, then

#(z) = 2/ W sin(k,z) = \/2/W sin(nzz/W),where n=1,2, ...

z
A

P\

Figure 1.2 Quasi two-dimensional electrons that are confined in the z-direction but free to
move in the x-y plane.
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Consider next electrons in a thin wire as shown in Figure 1.3. These
electrons are confined in the y- and z-directions, but they are free to move in
the x direction. The wave function of these quasi-one-dimensional electrons
is found solving eqn. (1.6) by separation of variables to find

l i
w(r) = (y,2) Y(x) = §(y,z) =e". 1.7¢
YA T (1.7¢)
If the confining potential is a simple, square well with infinite barriers, then

#(r,2) = W)singnry/W)sin(nzz (W), where m,n=1,2, ...

z

C J

Figure 1.3  Quasi one-dimensional electrons that are confined in the y and z-directions but
free to travel in the x-direction.

Quasi one- and two-dimensional electrons are produced by confining
them so that they can move in one or two dimensions only. Confinement can
be achieved electrostatically by producing a potential well with a gate
potential, as for electrons in a bulk MOSFET, or by physically confining
them to a thin, silicon film, as in a fully depleted silicon-on-insulator (SOI)
MOSFET. Confinement leads to discrete energy levels. Consider the thin
silicon slab shown in Fig. 1.2. If the confining potential is large, we may
assume an infinite well to obtain

2.2 2,22

PR i ST W (1.8)

2m 2m W
If this quantum well represents the thin silicon body of a SOI MOSFET, the
confining potential lies in the direction normal to the Si/SiO, interface and
electrons are free to move in the x-y plane, the plane of the interface. Each
energy level, therefore, represents a subband with many allowed k-states in
the plane. The total energy is the sum of the energy due to confinement in
the z-direction and the kinetic energy of motion in the x-y plane,
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h2k?
E(k):g"+-2——|£-= n=123... (1'9)
m

where knz =k + ky2 Because each subband has a density of states (Sec. 1.4),

and given a Fermi level, we can compute the electron density in each
subband (Sec. 1.5). Quantum confinement effectively raises the conduction
band by an amount £,. In general, the shape of the potential well is more
complicated than the simple box shown in Fig. 1.4, and the Schrédinger
equation must be solved to determine the energy levels. The essential
features remain, however. The subband energies increase and separate as the
confinement increases (W decreases), light effective masses give high
subband energies, and the carriers behave as quasi-two-dimensional carriers,
free to move easily in only two dimensions. (Similarly, in a quantum wire,
electrons are confined in two dimensions and behave as quasi-one-
dimensional electrons.)

Figure 1.4b shows the constant energy surfaces for electrons in silicon,
which are ellipsoids along the <100> directions. The ellipsoids are
characterized by two effective masses, so the question of which effective
mass to use in eqns. (1.8) and (1.9) arises. The subband energies are
determined by the effective mass in the direction of the confining potential.
Electrons in the two ellipsoids along the z-axis have a large effective mass
(the longitudinal effective mass, m, = 0.98 m,) and give rise to the unprimed
series of subbands in Fig. 1.4a. On the other hand, electrons in the four other
subbands have a light effective mass in the confinement direction (the
transverse effective mass, m, =0.19my) and produce the separate, primed

series of subbands in Fig. 1.4c. So in eqgn. (1.8), we use m, for the energy
levels of the unprimed series and m, for the primed series.

The heaviest effective mass gives the lowest subband energy, so the first
level of the unprimed series is the lowest subband. For this level, the
transverse effective mass in the plane, where electrons are free to move, is
the light effective mass, m,. This is the effective mass to use in egn. (1.9).
For the primed subbands, electrons have different effective masses when
moving in the x- and y-directions, so an average effective mass must be used.
When we evaluate the density-of-states, similar questions will arise. For
electrons in silicon, it is often a good approximation to assume that all
electrons occupy the lowest subband, especially when the confining potential
is strong. Because it makes the bookkeeping easy, we will assume that only
the lowest subband is occupied (see [1.5] for a more general treatment). For
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the first subband, the confinement energy is determined by the longitudinal

effective mass and motion in the x-y plane by the transverse effective mass.

a) {‘

&

.........

&

Energy, E;

&

v

b)
k.
c)

quﬁ

3
&

—> Ky
Figure 1.4

Quantum confinement in a well of width, 7, with electrons free to move in the

x-y plane. (a) Energy leveis for a Si quantum well. (b) Constant energy

surfaces for electrons in bulk Si, and (c) The E(k) relation for electrons in the
plane of the quantum well.
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1.4 Density of States
For a bulk semiconductor with a volume, ), applying periodic boundary

conditions to the wave function, eqn. (1.7a), leads to a discrete set of allowed
k-states. The density of states in k-space is a constant,

N;D(k)d3k=2x-§%, (1.10)

where Qis a normalization volume, and the factor of 2 arises from spin
degeneracy. We can use this result and the dispersion relation, E(k), to
derive the density of states in energy,

N3p (E)dE = N3p (k)d k. (1.11)

For three-dimensional carriers, we find

Np® )" e
D3D(E)= Q = 21’2»3 E_EC 4 (1‘12)

Similar arguments can be used to derive the density of states for two-
dimensional carriers. In k-space,

Ny (k)% =2x -2 d%, (1.13)
4r

where 4 is a normalization area in the two-dimensional plane. The two-

dimensional density of states per unit energy and area is

m

D, (E)=—. 1.14
2D ( ) T hz ( )
Finally, for one-dimensional carriers,
L
N,D(k)dk=2x§—dk, (1.15)
n

where L is a normalization length for the wire. The one-dimensional density
of states per unit energy and length is

D.D(E)=——-—“fr':7517. (1.16)
C



