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Preface

This book aims to present a general survey of algebra, of its basic notions and
main branches. Now what language should we choose for this? In reply to the
question ‘What does mathematics study?, it is hardly acceptable to answer
‘structures’ or ‘sets with specified relations’; for among the myriad conceivable
structures or sets with specified relations, only a very small discrete subset is of
real interest to mathematicians, and the whole point of the question is to
understand the special value of this infinitesimal fraction dotted among the
amorphous masses. In the same way, the meaning of a mathematical notion is
by no means confined to its formal definition; in fact, it may be rather better
expressed by a (generally fairly small) sample of the basic examples, which serve
the mathematician as the motivation and the substantive definition, and at the
same time as the real meaning of the notion.

Perhaps the same kind of difficulty arises if we attempt to characterise in terms
of general properties any phenomenon which has any degree of individuality.
For example, it doesn’t make sense to give a definition of the Germans or the
French; one can only describe their history or their way of life. In the same way,
it’s not possible to give a definition of an individual human being; one can only
either give his ‘passport data’, or attempt to describe his appearance and charac-
ter, and relate a number of typical events from his biography. This is the path
we attempt to follow in this book, applied to algebra. Thus the book accom-
modates the axiomatic and logical development of the subject together with more
descriptive material: a careful treatment of the key examples and of points of
contact between algebra and other branches of mathematics and the natural
sciences. The choice of material here is of course strongly influenced by the
author’s personal opinions and tastes.
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As readers, I have in mind students of mathematics in the first years of an
undergraduate course, or theoretical physicists or mathematicians from outside
algebra wanting to get an impression of the spirit of algebra and its place in
mathematics. Those parts of the book devoted to the systematic treatment of
notions and results of algebra make very limited demands on the reader: we
presuppose only that the reader knows calculus, analytic geometry and linear
algebra in the form taught in many high schools and colleges. The extent of the
prerequisites required in our treatment of examples is harder to state; an ac-
quaintance with projective space, topological spaces, differentiable and complex
analytic manifolds and the basic theory of functions of a complex variable is
desirable, but the reader should bear in mind that difficulties arising in the
treatment of some specific example are likely to be purely local in nature, and
not to affect the understanding of the rest of the book.

This book makes no pretence to teach algebra: it is merely an attempt to talk
about it. I have attempted to compensate at least to some extent for this by giving
a detailed bibliography; in the comments preceding this, the reader can find
references to books from which he can study the questions raised in this book,
and also some other areas of algebra which lack of space has not allowed us to
treat.

A preliminary version of this book has been read by F.A. Bogomolov, R.V.
Gamkrelidze, S.P. Démushkin, A.I. Kostrikin, Yu.l. Manin, V.V. Nikulin, A.N.
Parshin, M.K. Polyvanov, V.L. Popov, A.B. Roiter and A.N. Tyurin; I am
grateful to them for their comments and suggestions which have been incor-
porated in the book.

I am extremely grateful to N.I. Shafarevich for her enormous help with the
manuscript and for many valuable comments.

Moscow, 1984 L.R. Shafarevich

I have taken the opportunity in the English translation to correct a number
of errors and inaccuracies which remained undetected in the original; I am very
grateful to E.B. Vinberg, A.M. Volkhonskii and D. Zagier for pointing these out.
I am especially grateful to the translator M. Reid for innumerable improvements
of the text.

Moscow, 1987 LR. Shafarevich



6 § I. What is Algebra?

§ 1. What is Algebra?

What is algebra? Is it a branch of mathematics, a method or a frame of mind?
Such questions do not of course admit either short or unambiguous answers.
One can attempt a description of the place occupied by algebra in mathematics
by drawing attention to the process for which Hermann Weyl coined the un-
pronounceable word ‘coordinatisation’ (see [H. Weyl 109 (1939), Chap. I, §4]).
An individual might find his way about the world relying exclusively on his sense
organs, sight, feeling, on his experience of manipulating objects in the world
outside and on the intuition resuiting from this. However, there is another
possible approach: by means of measurements, subjective impressions can be
transformed into objective marks, into numbers, which are then capable of being
preserved indefinitely, of being communicated to other individuals who have not
experienced the same impressions, and most importantly, which can be operated
on to provide new information concerning the objects of the measurement.

The oldest example is the idea of counting (coordinatisation) and calculation
(operation), which allow us to draw conclusions on the number of objects without
handling them all at once. Attempts to ‘measure’ or to ‘express as a number’ a
variety of objects gave rise to fractions and negative numbers in addition to the
whole numbers. The attempt to express the diagonal of a square of side 1 as a
number led to a famous crisis of the mathematics of early antiquity and to the
construction of irrational numbers.

Measurement determines the points of a line by real numbers, and much more
widely, expresses many physical quantities as numbers. To Galileo is due the
most extreme statement in his time of the idea of coordinatisation: ‘Measure
everything that is measurable, and make measurable everything that is not yet
so’. The success of this idea, starting from the time of Galileo, was brilliant. The
creation of analytic geometry allowed us to represent points of the plane by pairs
of numbers, and points of space by triples, and by means of operations with
numbers, led to the discovery of ever new geometric facts. However, the success
of analytic geometry is mainly based on the fact that it reduces to numbers not
only points, but also curves, surfaces and so on. For example, a curve in the plane
is given by an equation F(x, y) = 0; in the case of a line, F is a linear polynomial,
and is determined by its 3 coeflicients: the coefficients of x and y and the constant
term. In the case of a conic section we have a curve of degree 2, determined by
its 6 coefficients. If F is a polynomial of degree n then it is easy to see that it has
4(n + 1)(n + 2) coeflicients; the corresponding curve is determined by these
coefficients in the same way that a point is given by its coordinates.

In order to express as numbers the roots of an equation, the complex numbers
were introduced, and this takes a step into a completely new branch of mathe-
matics, which includes elliptic functions and Riemann surfaces.

For a long time it might have seemed that the path indicated by Galileo
consisted of measuring ‘everything’ in terms of a known and undisputed collec-



§1. What is Algebra? 7

tion of numbers, and that the problem consists just of creating more and more
subtie methods of measurements, such as Cartesian coordinates or new physical
instruments. Admittedly, from time to time the numbers considered as known
(or simply called numbers) turned out to be inadequate: this led to a ‘crisis’, which
had to be resolved by extending the notion of number, creating a new form of
numbers, which themselves soon came to be considered as the unique possibility.
In any case, as a rule, at any given moment the notion of number was considered
to be completely clear, and the development moved only in the direction of
extending it:

‘1, 2, many’ = natural numbers = integers

=> rationals = reals = complex numbers.

But matrixes, for example, form a completely independent world of ‘number-
like objects’, which cannot be included in this chain. Simultaneously with them,
quaternions were discovered, and then other ‘hypercomplex systems’ (now called
algebras). Infinitesimal transformations led to differential operators, for which
the natural operation turns out to be something completely new, the Poisson
bracket. Finite fields turned up in algebra, and p-adic numbers in number theory.
Gradually, it became clear that the attempt to find a unified all-embracing
concept of number is absolutely hopeless. In this situation the principle declared
by Galileo could be accused of intolerance; for the requirement to ‘make mea-
surable everything which is not yet so’ clearly discriminates against anything
which stubbornly refuses to be measurable, excluding it from the sphere of
interest of science, and possibly even of reason (and thus becomes a secondary
quality or secunda causa in the terminology of Galileo). Even if, more modestly,
the polemic term ‘everything’ is restricted to objects of physics and mathematics,
more and more of these turned up which could not be ‘measured’ in terms of
‘ordinary numbers’.

The principle of coordinatisation can nevertheless be preserved, provided we
admit that the set of ‘number-like objects’ by means of which coordinatisation
is achieved can be just as diverse as the world of physical and mathematical
objects they coordinatise. The objects which serve as ‘coordinates’ should satisfy
only certain conditions of a very general character.

They must be individually distinguishable. For example, whereas all points of
a line have identical properties (the line is homogeneous), and a point can only
be fixed by putting a finger on it, numbers are all individual: 3, 7/2, \/5, n and so
on. (The same principle is applied when newborn puppies, indistinguishable to
the owner, have different coloured ribbons tied round their necks to distinguish
them.)

They should be sufficiently abstract to reflect properties common to a wide
circle of phenomenons.

Certain fundamental aspects of the situations under study should be reflected
in operations that can be carried out on the objects being coordinatised: addition,
multiplication, comparison of magnitudes, differentiation, forming Poisson
brackets and so on.
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We can now formulate the point we are making in more detail, as follows:

Thesis. Anything which is the object of mathematical study (curves and surfaces,
maps, symmetries, crystals, quantum mechanical quantities and so on) can be
‘coordinatised’ or ‘measured’. However, for such a coordinatisation the ‘ordinary’
numbers are by no means adequate.

Conversely, when we meet a new type of object, we are forced to construct (or
to discover) new types of ‘quantities’ to coordinatise them. The construction and
the study of the quantities arising in this way is what characterises the place of
algebra in mathematics (of course, very approximately).

From this point of view, the development of any branch of algebra consists of
two stages. The first of these is the birth of the new type of algebraic objects out
of some problem of coordinatisation. The second is their subsequent career, that
is, the systematic development of the theory of this class of objects; this is
sometimes closely related, and sometimes almost completely unrelated to the
area in connection with which the objects arose. In what follows we will try not
to lose sight of these two stages. But since algebra courses are often exclusively
concerned with the second stage, we will maintain the balance by paying a little
more attention to the first.

We conclude this section with two examples of coordinatisation which are
somewhat less standard than those considered up to now.

Example 1. The Dictionary of Quantum Mechanics. In quantum mechanics,
the basic physical notions are ‘coordinatised’ by mathematical objects, as follows.

Physical notion Mathematical notion

. Line ¢ in an co-dimensional
State of a physical system complex Hilbert s
Scalar physical quantity Self-adjoint operator
Slmulfa.neously measurable Commuting operators
quantities
Quantity taking a precise Operator having ¢ as eigenvector
value 4 in a state ¢ with cigenvalue 4
Set of values of quantities Spectrum of an operator
obtainable by measurement pec Per:
Probability of transition i
from state ¢ to state (o, ¥, where [o] = [y =1

Example 2. Finite Models for Systems of Incidence and Parallelism Axioms.
We start with a small digression. In the axiomatic construction of geometry, we
often consider not the whole set of axioms, but just some part of them; to be
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Fig. 1 Fig. 2

concrete we only discuss plane geometry here. The question then arises as to
what realisations of the chosen set of axioms are possible: do there exists other
systems of objects, apart from ‘ordinary’ plane geometry, for which the set of
axioms is satisfied? We consider now a very natural set of axioms of ‘incidence
and parallelism’.

(a) Through any two distinct points there is one and only one line.

(b) Given any line and a point not on it, there exists one and only one other
line through the point and not intersecting the line (that is, parallel to it).

(c) There exist three points not on any line.

It turns out that this set of axioms admits many realisations, including some
which, in stark contrast to our intuition, have only a finite number of points and
lines. Two such realisations are depicted in Figures 1 and 2. The model of Figure
1 has 4 points A, B, C, D and 6 lines AB, CD; AD, BC; AC, BD. That of Figure
2 has 9 points, A, B, C, D, E, F, G, H, I and 12 lines ABC, DEF, GHI; ADG,
BEH, CFTI; AEI, BFG, CDH; CEG, BDI, AFH. The reader can easily verify that
axioms (a), (b), (c) are satisfied; in our list of lines, the families of parallel lines are
separated by semicolons.

We return to our main theme, and attempt to ‘coordinatise’ the model of
axioms (a), (b), (c) just constructed. For the first of these we use the following
construction: write 0 and 1 for the property of an integer being even or odd
respectively; then define operations on the symbols 0 and 1 by analogy with the
way in which the corresponding properties of integers behave under addition
and multiplication. For example, since the sum of an even and an odd integer is
odd, we write 0 + 1 = 1, and so on. The result can be expressed in the ‘addition
and multiplication tables’ of Figures 3 and 4.

The pair of quantities 8 and 1 with the operations defined on them as above
serve us in coordinatising the ‘geometry’ of Figure 1. For this, we give points
coordinates (X, Y) as follows:
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Fig. 3 Fig. 4

A=(0,0, B=(©01), C=(1,0, D=(@,1)

It is easy to check that the lines of the geometry are then defined by the linear
equations:

AB:1X =0, CD:1X =1, AD:1X +1Y =0;
BC:1X +1Y=1; AC:1Y=0; BD:1Y =1.

In fact these are the only 6 nontrivial linear equations which can be formed using
the two quantities 0 and 1.

The construction for the geometry of Figure 2 is similar, but slightly more
complicated: suppose that we divide up all integers into 3 sets U, V and W as
follows:

U = integers divisible by 3,
V = integers with remainder 1 on dividing by 3,

W = integers with remainder 2 on dividing by 3.

The operations on the symbols U, V, W is defined as in the first example; for
example, a number in V plus a number in W always gives a number in U, and
so we set V + W = U; similarly, the product of two numbers in W is always a
number in V¥, so we set W-W = V. The reader can easily write out the corre-
sponding addition and multiplication tables.

It is then easy to check that the geometry of Figure 2 is coordinatised by our
quantities U, V, W as follows: the points are

A=(UU), B=(U,V), C=(UW), D=(V,U) E=WV),
F=(V,W), G=(WU), H=WV), I=WW)

and the lines are again given by all possible linear equations which can be written
out using the three symbols U, V, W; for example, AFH is givenby VX + VY =
U,and DCHby VX + WY = V.

Thus we have constructed finite number systems in order to coordinatise finite
geometries. We will return to the discussion of these constructions later.

Already these few examples give an initial impression of what kind of objects
can be used in one or other version of ‘coordinatisation’. First of all, the collection
of objects to be used must be rigorously delineated; in other words, we must
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indicate a set (or perhaps several sets) of which these objects can be elements.
Secondly, we must be able to operate on the objects, that is, we must define
operations, which from one or more elements of the set (or sets) allow us to
construct new elements. For the moment, no further restrictions on the nature of
the sets to be used are imposed; in the same way, an operation may be a com-
pletely arbitrary rule taking a set of k elements into a new element. All the same,
these operations will usually preserve some similarities with operations on
numbers. In particular, in all the situations we will discuss, k = 1 or 2. The basic
examples of operations, with which all subsequent constructions should be
compared, will be: the operation ai— — a taking any number to its negative; the
operation b b~! taking any nonzero number b to its inverse (for each of these
k = 1); and the operations (a, b} a + b and ab of addition and multiplication
(for each of these k = 2).

§ 2. Fields

We start by describing one type of ‘sets with operations’ as described in § 1
which corresponds most closely to our intuition of numbers.

A fieldis a set K on which two operations are defined, each taking two elements
of K into a third; these operations are called addition and multiplication, and the
result of applying them to elements a and b is denoted by a + b and ab. The
operations are required to satisfy the following conditions:

Addition:

Commutativity: a + b = b + a;

Associativity:a + (b + ¢y =(a + b) + c;

Existence of zero: there exists an element 0 € K such that a + 0 = a for every
a (it can be shown that this element is unique);

Existence of negative: for any a there exists an element (—a) such that
a + (—a) = 0 (it can be shown that this element is unique).
Multiplication:

Commutativity: ab = ba;

Associativity: a(bc) = (ab)c;

Existence of unity: there exists an element 1 € K such that al = a for every a
(it can be shown that this element is unique);

Existence of inverse: for any a # O there exists an element a™* such that
aa™' = 1 (it can be shown that for given g, this element is unique).
Addition and multiplication:

Distributivity: a(b + ¢) = ab + ac.

Finally, we assume that a field does not consist only of the element 0, or
equivalently, that 0 # 1.
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These conditions taken as a whole, are called the field axioms. The ordinary
identities of algebra, such as

(@ + b)?> = a® + 2ab + b?

or
—@+ Y r'=ata+ 1!

follow from the field axioms. We only have to bear in mind that for a natural
number n, the expression na means a + a + -*- + a (n times), rather than the
product of a with the number n (which may not be in K).

Working over an arbitrary field K (that is, assuming that all coordinates,
coeflicients, and so on appearing in the argument belong to K) provides the most
natural context for constructing those parts of linear algebra and analytic
geometry not involving lengths, polynomial algebras, rational fractions, and
SO on.

Basic examples of fields are the ficld of rational numbers, denoted by Q, the
field of real numbers R and the field of complex numbers C.

If the elements of a field K are contained among the elements of a field L and
the operations in K and L agree, then we say that K is a subfield of L, and L an
extension of K, and we write K < L. For example, @ < R = C.

Example 1. In § 1, in connection with the ‘geometry’ of Figure 1, we defined
operations of addition and multiplication on the set {0,1}. It is easy to check
that this is a field, in which 0 is the zero element and 1 the unity. If we write 0
for @ and 1 for 1, we see that the multiplication table of Figure 4 is just the rule
for multiplying 0 and 1 in Q, and the addition table of Figure 3 differs in that
1 + 1 = 0. The field constructed in this way consisting of 0 and 1 is denoted by
F,. Similarly, the elements U, V, W considered in connection with the geometry
of Figure 2 also form a field, in which U = 0, ¥ = 1 and W = — 1. We thus obtain
exampiles of fields with a finite number (2 or 3) of elements. Fields having only
finitely many elements (that is, finite fields) are very interesting objects with many
applications. A finite field can be specified by writing out the addition and
multiplication tables of its elements, as we did in Figures 3-4. In § 1 we met such
fields in connection with the question of the realisation of a certain set of axioms
of geometry in a finite set of objects; but they arise just as naturally in algebra
as realising the field axioms in a finite set of objects. A field consisting of q
elements is denoted by F,.

Example 2. An algebraic expression obtained from an unknown x and arbi-
trary elements of a field K using the addition, multiplication and division opera-
tions, can be written in the form

G +ayx+-+ax"

bt bixtH bx™ )

where ag;, b; € K and not all b, = 0. An expression of this form is called a rational
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fraction, or a rational function of x. We can now consider it as a function, taking
any xin K (or any x in L, for some field L containing K) into the given expression,
provided only that the denominator is not zero. All rational functions form a
field, called the rational function field; it is denoted by K(x). We will discuss
certain difficulties connected with this definition in § 3. The elements of K are
contained among the rational functions as ‘constant’ functions, so that K(x) is
an extension of K.

In a similar way we define the field K(x,y) of rational functions in two
variables, or in any number of variables.

An isomorphism of two fields X' and K" is a 1-to-1 correspondence a’ «»a”
between their elements such that a’«<+a” and b’ < b” implies that a’ + b’ «>
a” + b” and a'b «» a"b"; we say that two fields are isomorphic if there exists an
isomorphism between them. If L’ and L” are isomorphic fields, both of which are
extensions of the same field K, and if the isomorphism between them takes each
element of K into itself, then we say that it is an isomorphism over K, and that
L’ and L" are isomorphic over K. An isomorphism of fields K’ and K” is denoted
by K’ = K". If L’ and L” are finite fields, then to say that they are isomorphic
means that their addition and multiplication tables are the same; that is, they
differ only in the notation for the elements of L’ and L”. The notion of
isomorphism for arbitrary fields is similar in meaning.

For example, suppose we take some line a and mark a point O and a ‘unit
interval’ OE on it; then we can in a geometric way define addition and multiplica-
tion on the directed intervals (or vectors) contained in a. Their construction is
given in Figures 5-6. In Figure 5, b is an arbitrary line parallel to @ and U an
arbitrary point on it, OU || AV and VC| UB; then OC = OA + OB. In Figure 6,
b is an arbitrary line passing through O, and EU | BV and VC||UA; then OC =
OA-OB.

u v b v

A A C a

e TNTTN
Fig. 5 Fig.6

With this definition of the operations, intervals of the line form a field P; to
verify all the axioms is a sequence of nontrivial geometric problems. Taking each
interval into a real number, for example an infinite decimal fraction (this is again
a process of measurement!), we obtain an isomorphism between P and the real
number field R.



