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Preface

Since 1 started working in the area of nonlinear programming and, later on,
variational inequality problems, I have frequently been surprised to find that
many algorithms, however scattered in numerous journals, monographs and
books, and described rather differently, are closely related to each other. This
book is meant to help the reader understand and relate algorithms to each other
in some intuitive fashion, and represents, in this respect, a consolidation of the
field.

The framework of algorithms presented in this book is called Cost Approzi-
mation. (The preface of the Ph.D. thesis [Pat93d] explains the background to
the work that lead to the thesis, and ultimately to this book.) It describes,
for a given formulation of a variational inequality or nonlinear programming
problem, an algorithm by means of approximating mappings and problems, a
principle for the update of the iteration points, and a merit function which
guides and monitors the convergence of the algorithm.

One purpose of this book is to offer this framework as an intuitively appeal-
ing tool for describing an algorithm. One of the advantages of the framework,
or any reasonable framework for that matter, is that two algorithms may be
easily related and compared through its use. This framework is particular in
that it covers a vast number of methods, while still being fairly detailed; the
level of abstraction is in fact the same as that of the original problem statement.

Another purpose of the book is to provide a convergence analysis of the
algorithms in the framework. The analysis is performed under different inter-
esting combinations of choices of implementation and under different combina-
tions of assumptions on the problem being solved and the algorithm devised for
it. The analysis compares favourably with previous attempts to describe algo-
rithms for nonlinear programs and variational inequality problems in a common
framework, and establishes the convergence both of new versions of existing al-
gorithms and of methods previously unpublished. A fairly detailed, and to a
large degree non-technical, summary of the contents of the book can be found
in Section 1.3.

This book can be used in postgraduate courses in nonlinear optimization.
If the focus is on algorithm theory, then the prerequisites to (or the first parts
of) such a course should cover the fundamental theory of convex analysis (rec-
ommended: Rockafellar [Roc70a] or Hiriart-Urruty and Lemaréchal [HiL93a])
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and nonlinear optimization (recommended: Bazaraa et al. [BSS93] or Bert-
sekas [Ber95]). In this case, a course focusing on Chapters 1-4, 7, and the first
two sections of Chapter 9 covers some of the fundamentals of nonlinear opti-
mization and variational inequality problems, with emphasis on the theoretical
properties of them in association with the construction of algorithms.

A course oriented more towards the numerical aspects of large-scale non-
linear optimization can be based on this book, then requiring a background
in numerical analysis and computing (recommended: Bertsekas and Tsitsik-
lis [BeT89]). In this case, a course would concentrate mostly on Chapters 5, 6,
8, and 9, which include convergence analyses and adaptations of algorithms to
problems whose forms typically are found in large-scale settings.

With over 800 references, the book also serves as a reference source for
algorithms for the solution of nonlinear optimization and variational inequality
problems.

The idea to write this book formed during and after my stay 1994-1995 as a
postdoctoral fellow at the University of Washington in Seattle with Prof. Terry
Rockafellar. His initial input is greatly appreciated. The bulk of the book was
written in 1997, at Linkoping University and at Chalmers University of Tech-
nology in Goteborg. The planning of the structure of the book benefited from
discussions with Prof. Torbjorn Larsson, Prof. Sakis Migdalas, and especially
with Dr. Laura Wynter, to whom my deepest thanks are due.

Goteborg (Gothenburg), April, 1998

Michael Patriksson
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Chapter 1

Introduction

1.1 The variational inequality problem

Let X C R™ be a nonempty, closed and convex set, u : ®* — RU {+00} a lower
semicontinuous (l.s.c.), proper! and convex function, and F : domun X — R
a vector-valued and continuous mapping on domu N X.? The problem under
study is defined by three operators: the normal cone operator for X,

Nx(z) = {ézeﬂ“‘—"lzT(y—z)so, Vy € X}, :;j{( (1.1)

the subdifferential operator for u,
du(z) = {& € R" |u(y) 2 u(z) + & (y —2), VyeR™ )

and the mapping F. Consider the problem of finding a vector £* € R" such
that

[GVIP(F,u, X))
F(z*) + 8u(z") + Nx(z*) 5 O™, (1.2)

This problem is known as a generalized variational inequality ([FaP82)), as
a nonlinear variational inequality ([Noo75, Noo82a, Noo82b, Noo91b]), and
also as a generalized equation ([Rob79, Rob82, Rob83]). This problem, and its
various special cases, has a large variety of applications in the mathematical
and engineering sciences, for example in partial differential equations ([HaS66,
DuL72, EkT76, CGL80, KiS80, GLT81, BaC84, Cra84, Rod87, KiO88]), equi-
librium problems in games, economics and transportation analysis ([Kar69a,

1The function u is proper if u(z) < +oo for at least one z and u(z) > —oo for every z.
2The effective domain domu of u is the subset of R™ for which u(z) < +oo.
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Kar69b, Smi79, Daf80, BKS80, AhH82, BaC84, Flo86, Mat87, Zha88, Daf90,
ZhD91, Pat94b]), and nonlinear programming ([Roc69a, Sta69, Kar69b, MaS72,
Aus76, Roc80, BeT89, HaP90b)).

The set of solutions to GVIP(F, u, X ), which we will denote by SOL{F, u, X),
is nonempty under conditions that are stated in Section 2.1.

We next give a flavour of the large variety of problems that can be mod-
elled as special cases of GVIP(F,u, X ), and introduce the names of the most
important ones that we will study in detail.

1.1.1 Instances of the problem

Under the following assumption, the problem GVIP(F, u, X ) can be equivalently
stated in terms of the function u rather than its subdifferential mapping.

ASSUMPTION 1.1 (A regularity assumption). int (domu) N X # 0. a

REMARK 1.2 (Observations). Recall that the normal cone mapping Nx asso-
ciated with the convex set X is the subdifferential mapping of the indicator
function §x for X ([Roc70a, p. 215]),

0, zeX,
dx(z) := {+oo, T X (1.3)

The assumption is introduced to ensure that d[u + x](z) = Ou(z) + ddx (),
z € domu N X (e.g., [Roc81, Thm. 5C]), and may be replaced by, for example,
the symmetric condition that rint (dom u) Nrint X # @, where rint denotes
relative interior ([Roc70a, Thm. 23.8]); it can be further weakened whenever u
is a polyhedral function or X is polyhedral.

Note, finally, that the assumption is fulfilled whenever domu = R". 0

PROPOSITION 1.3 [Pat97] (Equivalent variational inequality formulation). Un-
der Assumption 1.1, the problem GVIP(F,u, X) is equivalent to the problem of
finding an =* € X such that

F(z")T(z - z*) + u(z) — u(z*) >0, vz € X. (1.4)
Proor. Consider the convex problem
minimize h(z) := F(z*) 'z + u(z), (1.5)
z€X

where z* € X. It is clear that (1.4) is equivalent to z* being a globally optimal
solution to this problem. By virtue of Assumption 1.1, we may characterize z*
by the inclusion

Oh(z*) + Nx(z*) 5 0" (1.6)
([Roc70a, Thm. 27.4]). Further, Assumption 1.1 implies that
Oh(z) = F(z*) + Ou(z), T €X; 1.7

combining (1.6) and (1.7) yields the desired result. O
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COROLLARY 1.4 (Equivalent variational inequality formulation). Under Assump-
tion 1.1, the problem GVIP(F,u,X) is equivalent to the problem of finding an
z* € X such that

F@')™ (@ -2") + (@227 20, VzeX. (1.8)

PROOF. The result follows from utilizing that h'(z*;z —z*) >0 forallz € X
constitutes the necessary and sufficient optimality conditions of z* in (1.5). 0O

EXAMPLE 1.5 (System of variational inequalities over a Cartesian product set).
Let the feasible set of GVIP(F,u,X) be described by a Cartesian product of

feasible sets,

X = HX,', X,' g %m, Zni =n, (19)
ieC ieC

for some finite index set C, where each set X; is nonempty, closed and convex.
Furthermore, the function u is assumed to be separable with respect to the
partition of " defined by (1.9), that is, u is of the form

u(z) ==Y _ ui(z:),

ieC

where u; : ®% — R U {+o00} is a lower semicontinuous, proper and convex
function for each i € C.

The mapping F is in general not separable with respect to the given partition
of ®*; otherwise, the problem GVIP(F,u, X) would decompose into a number
of independent problems of the form GVIP(F;, u;, X;). [We can therefore argue
that the given problem generalizes GVIP(F,u, X).]

Several examples from this class of variational inequality problems will be
given in this and the next section; Chapter 8 is devoted to algorithms that are
designed to utilize such a problem structure, and contains further examples. O

EXAMPLE 1.6 (Nash equilibrium problem). Let X := [[¥_, X; be the product
of individual nonempty, closed and convex strategy sets X; C ®™, 3" ' n; =
n. We define a penalty function f; : X — R for each player, defined on the
joint strategy space, and assumed convex and in C! on X;. Further, we let
z = u(z) := Y )., ui(z;) be a l.s.c., proper and convex separable loss function
on X. A Nash equilibrium of the non-cooperative N-person game associated
with this data is described by a point z* € X which, for each i € {1,...,N},

satisfies
filgh, z7) +ui(z]) = minimum {fi(2%i, zi) + ui(zi)}, (1.10)
that is, the players’ strategies are optimal with respect to their individual

penalty (disutility) functions, based on the strategies of the other players.
The optimality conditions for (1.10) define an instance of GVIP(F,u, X) of
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the form described in Example 1.5, in which £ = (z1,...,2n5), X =[], Xi,
and F = (Vg f1,-- -, Vap fN)-

The theory of non-cooperative N-person games was first studied by Cournot
(for N = 2) and Nash [Nas50, Nas51]; results on the existence and uniqueness
of Nash equilibria are given in [Ros65, HaS66, LiS67, Kar72, Fri77, GaM80,
Go0080], and applications and computational approaches are given in [Kar69b,
GaM80, Pan85, Coh87, BeT89, HaP90b]. 0

REMARK 1.7 (Non-unique representation of GVIP(F,u, X)). GVIP(F,u, X) is
not stated uniquely in terms of the three-tuple [F,3u, Nx]. For example, the
set X can be represented by adding to u the indicator function dx of X, defined
in (1.3). This infinite penalty function is l.s.c., proper and convex (e.g., [Phe89,
p- 40]), as is u + dx (see [vTi84, Sec. 5.4] and [Roc70a, Thm. 5.2]), 8dx = Nx
holds ([Roc70a, p. 215]), and (as stated in Remark 1.2), O[u+dx](z) = Ju(z) +
Nx(z), z € domu N X, holds under Assumption 1.1. So, any convex constraint
can be placed either in the description of X or as an infinite penalty added to
the description of u, and under Assumption 1.1, therefore, there is no loss of
generality in expressing GVIP(F,u, X) as the generalized equation

[GE(F, u)]
F(z*) 4+ Bu(z*) 5 0™. (1.11)

(In other words, letting u := u + dx.) This problem is a special case of the
problem of finding a zero of the sum of two operators (see [Bré73, LiM79,
Tse91a, EcB92], and the references cited therein).

It goes without saying that the problem class GE(F,u) defines a proper
subset of GVIP(F,u,X) whenever domu = R™ and X # R"; this case is,
however, not treated separately.

Furthermore, the decomposition of F' and du is not unique: adding the
gradient mapping Vh of an arbitrary convex function h to du and subtracting
it from F' leaves GVIP(F,u, X) unaltered.

Due to the non-uniqueness of the decompositions of Nx and du and of
F and Ou, there is a large freedom-of-choice in representing an instance of
GVIP(F,u,X) in terms of these mappings. This is important because the
algorithms that we shall deal with are defined by different approximations
of the three-tuple [F,du,Nx]. Hence, depending on the representation of
GVIP(F,u, X), the algorithms for solving GVIP(F,u,X) will vary as well,
both in terms of their interpretation and properties as well as in terms of their
convergence requirements. We will make use of the possibility to change the
representation of GVIP(F,u, X) to obtain new and more general results. In
particular, we will consider representations based on projecting GVIP(F, u, X)
onto different solution spaces and representations involving the introduction of
constraint multipliers. O

If u = 0 in GVIP(F,u, X) (note that Assumption 1.1 then is satisfied triv-
ially), which is equivalent to assuming that in GE(F,u), u = dx for some
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nonempty, closed and convex set X C R", we obtain the variational inequality
problem of finding =* € R” such that

[VIP(F, X)]
F(z*) + Nx(z*) 3 0", (1.12)

or, in its more familiar form [utilizing (1.1)] of finding z* € X such that

.~

Fi*)T(z-2z*)>0, VrzeX. (1.13)

VIP(F, X) is also known as the stationary point problem ([Eav78b]), and z* as
a stationary point.

REMARK 1.8 (Projection characterization). We note for future reference a char-
acterization of the solutions z* to VIP(F, X) in terms of a fixed-point involving
the projection of a vector defined by z* onto X. Introducing vy > 0, we may
write (1.13) equivalently as the inequality -

[(A/m)a* + F(a*) = (1/7)2*]T(z —2%) 20, VzeX
— :
[(z* —vF(z*) — 2] (z —2) <0, VzeX;

this inequality shows that z* — yF(z*) — z* belongs to the normal cone to X at
z*, which is equivalent to the statement that z* is the Euclidean projection of
the vector z* — yF(z*) onto X, or, in other words, £* = Px[z* —yF(z*)]. More
generally, introducing a symmetric and positive definite matrix ¢ € R"*", a
similar technique shows that a solution z* to VIP(F, X) is characterized by the
inequality

[(z* -7Q7'F(z")) —2]"Q(z —2") <0, VzeX,

which is equivalent to z* being the projection of the vector z* — yQ 1 F(z*)
onto X according to the vector norm ||z{|g := /2TQz defined by Q, that is,
z* = PY[z* —yQ ' F(z*)).

We note finally that the projection characterizations shown here will re-
appear in the construction of iterative algorithms for VIP(F, X). |

EXAMPLE 1.9 (Traffic equilibrium). Let G = (N, .A) denote an urban traffic
network of nodes (intersections and centroids) and directed links (road sec-
tions). A subset C of N x N defines a set of commodities, associated with pairs
k of origins and destinations of trips. It is assumed that the demand for trans-
portation between any pair k of nodes in C is known; we denote this number
by di. Letting zx,, 7 € Ri, be the flow on route r for commodity (OD pair) k,
the set of feasible route flows is described by the constraints

S wer=di, VkeC, (1.14a)
r€ERy
Tk 20, VkeC, (1.14b)
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or, compactly,
X ={z € RIR! | TTz = d; z > 0RIY,

where R := Ux Ry and I'T is the route-OD pair incidence matrix such that

1, route r joins OD pair &,
7,”:{ ] P reRg, ke€eC.

0, otherwise,

Assume further that each route r € Ry, k € C, is associated with a route
cost (or, travel time) function Fy, : %lfl +— R4, which measures the disutility
of traversing that route as a function of the volume of traffic on the network.
Under the assumption that a traveller chooses the route to her destination
which minimizes her cost (travel time) given the current network conditions, a
steady-state is characterized by an equilibrium situation in which no traveller
can reduce her cost by changing route. Therefore, all routes which are used
between any given OD pair have the same, minimal, cost. This equilibrium
situation is described as follows (where 7, takes the role of the minimal travel
cost in OD pair k):

:L’k,-[Fkr(:E) - 7Tk] =0, r € Ry, kecC, » (1.153)
Fi(z) —m 20, reRe, keC. (1.15b)

These conditions for a feasible route flow (the Wardrop [War52] equilibrium
conditions) are equivalent to VIP(F, X), with F := (Fi,)reRr, kec.® Note finally
that this is an instance of the problem of Example 1.5.

The area of transportation planning was at the forefront in the early de-
velopments in algorithms for finite-dimensional variational inequality problems
took place in the 1980s; for overviews of the field, see {She85, HaP90b, Nag93,
Pat94b, FIH95). O

EXAMPLE 1.10 (Saddle point problem). Let V C R" and W C R™ be closed
convex sets, and II : V x W — R be a continuous function on V x W. The
saddle problem associated with II is to find (v*,w*) € V x W such that (e.g.,
[vNe28, Dan67, Roc70a, DeM74a))

[SPP(IL,V x W)]
I{v*,w) < O(v*,w*) < (v, w"), Y{v,w) e VxW. (1.16)
(This problem is closely related to the min-max and max-min problems
mi{}l.ier‘rllize ma‘fier‘rllvum (v, w); ma(z(eirvrtllize mir})ien‘}um (v, w);

see, e.g., [Roc70a, Part VII].) Necessary conditions for a saddle point at (v*, w*)
are that ([Rob76, Rob82])

VoI, w*) + Ny(v*) 3 0% —V,II(u*,w*) + Nw(w*) 3 0™, (1.17)

3The Wardrop conditions arise as the primal-dual optimality conditions of the linear
program minimizez¢ x F(z*)Tx equivalent to VIP(F, X), see [Pat94b, Thm 3.14.a).
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