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Preface

Delay differential equations (DDEs) are also known as functional differ-
ential equations or differential-difference equations. They play an important
role in the research of various applied sciences, such as control theory, popula-
tion dynamics, electrical networks, environment science, biology, bioecology,
and life science. Delay differential equations are often used as their mathe-
matical models. As we know, the subject of ordinary differential equations
is as old as the subject of calculus. Although the subject of delay differential
equations is relatively young, its theoretical study has been matured today.
However, the field of the numerical methods for delay differential equations
is still new. It was not systematically studied until 1975. The reason may
be that in the early years researchers considered the numerical treatment
of delay differential equations similar to that of ordinary differential equa-
tions and unnecessary to pay special attention to delay differential equations.
Contrary to the common belief that time, the numerical treatment of delay
differential equations is much more complicated than that of ordinary differ-
ential equations. The reason is that in those equations, the instantaneous
derivative of the unknown function depends not only on the time and the
value of the unknown function at the time, but also the values of the un-
known function (even its derivative) prior to the time. This leads to the
complication of the difference equations after discretization. Consequently,
solving such difference equations is very difficult. For example, even a direct
discretization of a simple pantograph equation results in a variable order and
variable coefficient linear difference equation.

Internationally, before 1975, there were few publications on the study of
delay differential equations, for example, Zverkina in 1960, Miranker in 1962,
Snow in 1965, Feldstein in 1969, and Javernini in 1971. In 1975, Barwell
[2, 3] proposed the concepts of P-stability and G P-stability, which are simi-
lar to the A-stability in the numerical ordinary differential equations. In
1984, Bellen studied the one-step collocation methods for delay differential
equations. In the same year, Jackiewicz [25] discussed the asymptotic stabili-
ty of the #-methods. For the Runge-Kutta methods, in 1986, Zennaro [61]
studied the P-stability properties. In 1988, Bellen, Jackiewicz, and Zennaro
[4] discussed the asymptotic stability of the implicit Runge-Kutta methods for
neutral delay differential equations. In 1985, Watanabe and Roth [58] were
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the first to study the P-stability and G P-stability of the linear multistep
methods. At Leiden University in Holland, In’t Hout, M.Z. Liu, and Spijker
in 1990 [45], 1991 [24], 1992 [21, 20], and 1993 [44] made outstanding contri-
butions to the study of the P-stability and G P-stability. Torelli in 1989 [55]
and 1991 [56] studied nonlinear delay differential equations and proposed the
concepts of GPN-stability and GRN-stability. These concepts correspond
to the AN-stability and BN-stability in ordinary differential equations. For
neutral equations, in 1994, Tian et al first proposed the concept of NGP-
stability [41]. In 1997, Kuang [35] gave another important concept of PL-
stability corresponding to the L-stability in ordinary differential equations.
For the generalized neutral equations, Cong [14, 13, 11] gave the concept
of the NG Pg-stability and presented sufficient and necessary conditions for
the NGPg-stability of the implicit Runge-Kutta methods and linear mul-
tistep methods. Other authors of the study of numerical stability of delay
differential equations and neutral delay differential equations include Koto
[27, 28, 29, 30, 31], Qiu and Mitsui [49, 50]. In recent years, the study of
pantograph equations has been a hot topic. Various concepts of stability have
been proposed. The reader can find more terms of stability in the index.

In addition to an introduction to the numerical methods for ordinary diff-
erential equations, this book emphasizes the study of the stability of the
difference equations obtained by discretizing various kinds of delay differen-
tial equations. The reason for this emphasis is that for a numerical method
the only issue other than convergence (including accuracy) is its stability.
Unstable methods or methods with very small stability regions require ex-
treme caution, because rounding errors may overwhelm numerical solutions,
even halt computer programs. Whereas methods with good stability maintain
the asymptotic or instantaneous behaviour of theoretical (analytic) solutions.
This is a desirable property for engineers. Because of numerous kinds of de-
lay differential equations, there are a number of concepts of stability. The
purpose of this book is to introduce the basic concepts and theory of the sta-
bility of the numerical methods for solving delay differential equations and
basic techniques for proving stability of numerical methods. So the reader
can apply the techniques elsewhere.

The first three chapters of this book review the basic methods for solving
the initial value problems of ordinary differential equations and the analysis
of stability. Chapter 4 introduces the numerical methods for the linear test
equations, discusses the P-stability and G P-stability. Chapter 5 generalizes
the results in Chapter 4 to systems of delay differential equations. Chap-
ter 6 discusses the GPN-stability and GRN-stability of the Runge-Kutta
methods for the nonautonomous linear and nonlinear differential equations
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respectively. Chapter 7 studies the NG P-stability of neutral delay differ-
ential equations. Chapter 8 discusses the reducible quadratures for solving
the second class Volterra delay integral equations and their numerical sta-
bility. Chapter 9 studies the numerical methods for the pantograph delay
differential equations and their stability analysis.

Starting Chapter 4, at the end of each chapter, we give a big picture
outlining the content of the chapter. This book is based on the references
listed in Bibliography. The supplementary references closely related to this
book are listed in Suggestion for Further Reading.

This book is for graduate students in mathematics, physics, and engi-
neering. It can also be used as a reference book for researchers or teachers
in related areas. The prerequisites for this book are calculus, complex analy-
sis, matrix theory, and basic knowledge of ordinary and delay differential
equations.

We would like to sincerely thank Professor Sanzheng Qiao for his valuable
suggestions for selecting topics, editing structure, and improving the language
for accuracy and readability. This book cannot be timely published without
his help. Also, we would like to acknowledge the financial support from
E-Institutes of Shanghai Municipal Education Commission (No. E03004),
National Natural Science Foundation (10171067), and Shanghai Normal Uni-
versity. We would like to thank our friends and colleagues who have helped
us in various ways. Please send us your comments and any corrections.

Authors
June 2005
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Chapter 1
Linear Multistep Methods

In this chapter, we study the fundamental concepts and theory of linear
multistep methods for solving ordinary differential equations (ODEs). First,
we motivate the study of the stability of the numerical methods for delay
differential equations (DDE) in Section 1.1. Then, in Section 1.2, we present
the concepts of convergence, consistency, and stability and their relations. In
Section 1.3, we answer the question: What is the maximal order a zero-stable
linear multistep method can attain? Finally, Section 1.4 is devoted to the
topic of the A-stability.

1.1 Introduction

In an ordinary differential equation (ODE)

y'(t) = f(t,y(t)

the derivative /(t) is a function of time ¢ and y(¢). In many applications, the
derivative, the rate of change, at time ¢ depends not only on t and y(¢) but
also the solution function evaluated at an earlier time y(t — 7), where 7 > 0.
Thus a delay differential equation (DDE) has the form:

y'(t) = f(t,y(t),y(t —1)).

In early years, it was believed that solving DDEs, or functional differential
equations in general, was not different from solving ODEs and it was un-
necessary to pay special attention to the study of DDEs. On the contrary,
using the linear multistep methods or the Runge-Kutta methods, the stabi-
lity analysis of numerical methods for DDEs is much more complicated than
that for ODEs. In the following, using a general linear multistep method, we
illustrate the difference between DDE and ODE. Consider the linear k-step
method:

k k
Zajym—j = hZﬁjfn+j, or#0 and o+ B3 #0 (1.1)
=0 =0
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for solving the initial value problem of the single first-order ODE

'(t) = f(t,y(t), t=to,
{ o(to) =, ’ (1.2)

where f is a complex-valued function and sufficiently differentiable guaran-
teeing the existence of a unique solution of the initial value problem (1.2).
To study the stability of the numerical method, applying the method (1.1)
to the test problem

{ y'(t) = Ay(t), Re(A) <0,
y(tO) =1,

we obtain the recurrence relation
k k
D nt; =BAY Biyns ;- (1.3)
j=0 i=0

The above equation is also called the linear difference equation for {y,}. From
the theory of linear difference equations, the solution {y,} of the difference
equation (1.3) satisfies

lim y, =0
n-—oC
for any initial values yo,y1,- -, yk—-1 if and only if the characteristic polyno-
mial
p(2) = p(z) — ho(z), h=Mh, h>0, (1.4)

is a Schur polynomial, where p(z) = E?:o ajz? and o(z) = Zf:o Bz, In
other words, all the roots of the characteristic polynomial (1.4) lie inside
the unit circle. To determine whether p(z) is a Schur polynomial, since the
degree of p(z) is a constant, we repeatedly reduce the degree of p(z) by using
the Schur criterion and finally determine whether a polynomial of low degree
is a Schur polynomial. Specifically, let

p(z) = ck2® + cp12 T4tz + o,
p(z) = " +ef T 42+ o

where ¢} are the complex conjugate of ¢; (i = 0,1,---, k). The Schur criterion
says that p(2) is a Schur polynomial if and only if

pi(2) = - [0)p(2) ~ p(0)p()]
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is a Schur polynomial and |p(0)| > |p(0)|. Obviously, p;(2) is of degree k — 1.
Repeating the above procedure, we only determine whether a polynomial of
low degree is a Schur polynomial.

Now, to show the difference between ODE and DDE, we apply the linear
multistep method (1.1) to the following simple model DDE:

{ Y'(t) =ay(t) + byt —7), t>0,
y(t) = ¢(t), t<0,

where 7 > 0 and |b| < —Re(a). Let h = 7/m, where m > 1 is an integer, be
the step size in the method (1.1), then we have the difference equation

k k k
D Qynss =ha> Bjyntj + hb > Bivntiom-
Ji=0 Jj=0 Jj=0
Its characteristic polynomial is (see also Section 4.3)

Pm(2) = Q(2)2™ + p(2),

where
Q) = p(z) - d0(2),
p(z) = a(2)b,
a = ha,
b = hb.

Because m > 1 is an arbitrary positive integer, the Schur criterion cannot
be used to determine whether p,,(z) is a Schur polynomial. We must find
other ways. This clearly shows that the problems arisen from DDEs are more
complicated than those from ODEs.

1.2 Consistency, Convergence and Stability

Before studying the stability of a linear multistep method, we introduce the
definitions of convergence and zero-stability, related concepts, and their re-
lations.

Definition 1.2.1 (convergence) Suppose that the solution of the initial
value problem (1.2) uniquely exists and the solution sequence obtained by
applying the linear multistep method (1.1) to the problem (1.2) is {yn}, where
the initial values yo,y1, -, yr_1 satisfy

,{Lnéyi=%gr})ni(h) =n, 1=0,1,--- k-1,
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then the linear multistep method (1.1) is said to be convergent if

i = n)s p— t — t
lim g = y(tn), nh=tn~to
holds for any t, € [to,b)].

Example Apply the Euler’s method

Yn+1 = Yn + hfny, fo= f(tnv yn)

to the test equation
{ y'(t) = Ay(t),
y(0) = 1.

Let t = nh be fixed, then
Yn = Yn—1 + hfn1
= (14 M)y
At\ "
= (1+5) w
Aty At
= (l-f—?{) no(h) — e, ash —0,
which shows that the Euler’s method is convergent.
Now we turn to the concept of the order, which indicates the accuracy,

of a numerical method.
Suppose that y(t) € C'[tg,b]. Define the difference operator

k

Lly(t);hl = [ayy(t + jh) — hB;y' (t + jh)) (1.5)
7=0

associated with the linear multistep method (1.1). Using the Taylor expan-
sions of y(t + jh) and y'(t + jh) about ¢
e+ 3) = (0 + /) + Sl +

Y+ 3h) = 3/(8) + jhy" (D) + (—Q’ﬁ)—y@(t) o

and collecting the terms of the same power of k, from (1.5), we get

Lly(t); ] - coy(t) + crhy'(8) + -+ + cghy D (t) + - -, (1.6)
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where

Co=ap+ay+- -+ a,
ca=on+2a+-+kag—(Bo+ B+ + Br),

: . 1
cq= E(al + 2% + - - + k) — (—q——T)'(ﬁl + 2«1—1132 4t kq_l,@k)'
(1.7)

Definition 1.2.2 (order) The difference operator L in (1.5) or the asso-
ciated linear multistep method (p,o) is said to be of order p, if cg = ¢; =
- =1¢p =0 and cpy1 # 0 in (1.6). We call cpy1/0(1) the error constant of
the method (1.1).

Definition 1.2.3 (consistency) If the linear multistep method (1.1) is of
order p 2 1, then it is said to be consistent.

Obviously, from Definition 1.2.2 and (1.7), the method (1.1) is consistent if
and only if
cg=c =0
or
p(1)=0 and p'(1) =a(1).

Associated with the difference operator £, we define truncation errors.

Definition 1.2.4 (local truncation error) The local truncation error of
the linear k-step method (1.1) is defined by

Tn-Hc = ‘C[y(tn)a h]>

where L is given by (1.5) and y(t) is the theoretical solution of the initial
value problem (1.2).

The truncation error T, 1 is local in the following sense. Under the
localization assumption

yn+j:y(tn+j), j:O)Ia"')k_]-a

for the linear multistep method (1.1), that is, there are no previous trunca-
tion errors, the application of (1.1) to (1.2) yields y,4% and shows that the
local truncation error T, is proportional to y(tn4x) — Ynsk. Without the
localization assumption, y(t, k) — Ynik = entk is called the global truncation
error.

Now we give the concept of zero-stability, recalling that p(z) and o(z)
denote respectively the first and second characteristic polynomials.
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Definition 1.2.5 (zero-stability) Let&;, j =1,---,k, be the roots of the
first characteristic polynomial p(€) of the linear k-step method (1.1). If|§;| <
1 forj=1,---,k and for any jo such that §;,| = 1, &, must be a single root
of p(€), then the method (1.1) is said to be zero-stable (or Dahlquist stable
or that the method (1.1) satisfies the root condition).

Now that we have introduced concepts, in the rest of this section we
present the relations between convergence, consistency, and zero-stability.

From the Definition 1.2.1 of convergence, for a method to be useful, it
should be convergent. The following theorem, Dahlquist’s fundamental theo-
rem states that a convergent linear multistep method is zero-stable.

Theorem 1.2.1 If the linear multistep method (1.1) is convergent, then it
is zero-stable.

Proof. Consider the initial value problem
y'(t) =0, y(0)=0.

Its theoretical solution y(t) = 0. Applying (1.1) to the above problem, we
have the difference equation

k
Z AYntj = Ov
Jj=0

whose characteristic polynomial is

k
p(&) =Y a8
7=0

We first consider the case when all the roots £1,&a, - - -, & of p(€) are distinct.
Then the general solution y,, of the difference equation satisfying the require-
ment that the starting values y,, — y(0) as h - 0, m =0,1,---,k — 1, has
the form

Yn = h(d1 &1 + do&5 + -+ - + di&f),

where d; (i = 1,2,---,k) are arbitrary constants. Since d; are arbitrary,
yn — 0 (n — o0) if and only if

lim e = 0,
h—07
nh=t
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for each 7, that is

lim tg—i =0 ifandonlyif |&|<1.
h—0 n

nh=t

We then consider the case when &; is a multiple root of p(§) with multiplicity
g > 1. Then the contribution of §; to the solution y, is of the form

h[di,l +d;on + di,gn(n -1+ + di,qn(n —-1)--- (n—q+ 2)]6?
Thus the general solution has a term d;hAn9~*¢" and for ¢ > 1,

lim hn?= 1€ = lim tn9" 26 =0 if and only if |&]| < 1.
— —0
r?h:ot v:lh:t

This completes the proof. ]

The following theorem states another condition for a convergent linear
multistep method.

Theorem 1.2.2 A convergent linear multistep method (1.1) is necessarily
consistent.

Proof. We first prove that ¢ = 0. Consider the initial value problem
{ y'(t) =0,
y(0) =1,

whose theoretical solution y(t) = 1. Applying (1.1) to the above problem,
we get

QoYn + 01 Ynt1 + - + QYnik = 0. (18)
Assume that y,, = 1 for m = 0,1,---,k — 1. Since the linear multistep
method is convergent,
lim y, = 1.
h—0
nh=t

Letting n — oo in (1.8), we have
ag+ay+---+aop=0,

that is ¢g = 0.
Next, to prove ¢; = 0, we consider the initial value problem

{ y'(t) =1,
y(0) = 0,
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whose theoretical solution y(¢) = ¢. Applying (1.1) to this problem, we get
aoYn + 01Ynt1 + - F QkYUntk = h(Bo + B+ -+ + Br)- (1.9)
It can be verified that y, = nhk, where
k= Bo+ P+ +B)/(kar + - + ),

is a solution sequence of (1.9). It follows from the convergence of the method
(1.1) that

lim y, =,
h—0
nh=t

implying tk = t. Thus k = 1, that is p’(1) = (1) or ¢; = 0. O

Before presenting relations between consistency and zero-stability, we in-
troduce the concept of stability related to zero-stability.

Definition 1.2.6 (stability) Let {y,} and {z,} be two solution sequences
of (1.1). If for any € > 0, there exists a 6 > 0 such that

max |z, — Le
tostnsbl n = ¥nl <

when
max |z; —yi| <6 O<h<h
0<i<h 1|] le\ ’ < ho,

then we say that the method (1.1) is stable.

The following theorem establishes that stable and zero-stable are equiva-
lent under the condition of consistency.

Theorem 1.2.3 If the linear multistep method (1.1) is consistent, then it
is stable if and only if it is zero-stable.

Proof. To prove this theorem, we consider the initial value problem

{M®=&
y(0) =0,

whose theoretical solution is y(¢) = 0. Applying (1.1) to the above problem
with the starting values yg =y1 = --- = yx_1 = 0, we get

Yn =0, VneN.
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For the starting values zg = ¢, 21 = €&, --+, zxp—1 = EE;-C_I, we have the

solution
zn = €€}, VYn€N.

Let &;, €] > 1, be a root of p(§), then

N(h
Ogﬁéb Iyn - z'nl L€ |£]l ( )a
where N(h) is the largest positive integer n such that nh < b. Obviously,
N(h) — oo when h — 0. It then follows that

ngj}ébwn —2p| 00 as h—0,
which shows that the method (1.1) is not stable. For a multiple root §;,
|€;] = 1, the proof is similar.

Next, suppose that (1.1) is zero-stable, we prove that the method is stable.
For simplicity, we prove this for the equation 3’ = A\y. We also assume that
the roots of p(£) are distinct. Applying (1.1) to the equation ¥y’ = Ay, we get

k k
> ynsi =hAD Biyn+s- (1.10)
= —
Let e, = yn — 2, and |e,| <e,n=0,1,--- ,k — 1. From (1.10), we have
k
D (o5 — hABj)ent; =0. (1.11)
5=0

For sufficiently small h > 0, the roots & (h), & (R),- - -, &x(h), where h = h),
are distinct and & = &(0) (¢« = 1,2,---,k). Thus the general solution of
(1.11) can be expressed as

k
en =) milG(MN, n>0. (1.12)
=0
Let n =0,1,---,k — 1, then we have the system

eg =T1+re+---+ Tk,
e1 = 11€1(h) + r2&a(R) + - - - + riéi(h),

ex-1 = r1[&(R)F T+ ral&A)F T + -+ g (R))FL



