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Foreword

AIM AND SCOPE OF THE SERIES

What Is Global Analysis?

From ancient times till Newton, mathematics meant geometry and
algebra. Then analysis (now called classical) was born, along with the
foundations of physics, engineering, and modern science. Among the out-
standing events of modern mathematics are the syntheses of these fields
along common frontiers. The synthesis of classical analysis and geometry is
now called global analysis.

The History of Global Analysis and Its Applications

Important pioneers in the synthesis of global analysis were Henri
Poincaré (1880s), George Birkhoff (1920s), Marston Morse (1930s), and
Hassler Whitney (1940s). The technical tools of differential topology (1950s)
made the final synthesis possible (1960s). Through the efforts of Solomon
Lefshetz (1950s), the work of the Russian school (Liapounov, Andronov,
Pontriagin) on dynamics became widely known in the west and included in
this synthesis. A veritable explosion of new results and applications fol-
lowed in the 1970s. '

From the earliest work of Poincaré and Liapounov onward, the appli-
cations of geometry and analysis to astronomy, physics, and engineering
provided the explicit motivation for much of this work. The current form of
the theory reflects this pervasive influence in its direct applicability to these

Xi



Xii FOREWORD

fields. It has already created new and powerful methods of applied mathe-
" matics, which complement existing tools such as perturbation methods,
asymptotics, and numerical techniques.

Far from being the exclusive preserve of pure mathematicians, global
analysis has its roots in physical problems and can be redirected to these
problems once again, often with startling results.

Target of the Series: The Accessibility of Global Analysis

There is a great contrast between the potential importance of global
analysis and the great difficulty of learning about it. A growing number of
scientists of all disciplines have discovered that the techniques of global
analysis have important applications in their own fields; they are looking
seriously for keys to these techniques. This series will attempt to provide the
keys.

Needed are books that introduce the basic concepts and their applica-
tions, texts that develop the prerequisites for more serious study accessibly
and compactly, and advanced monographs which make the research frontier
available to a wide audience of scientists and engineers who have acquired
these prerequisites. To these ends, this series will deal with such subjects as

Theory
Linear algebra and representation theory
Calculus on manifolds and bundles
Differential geometry and Lie theory
Manifolds of mappings and sections
Transversal approximations
Calculus of variations in the large
Dynamical systems theory and nonlinear oscillations
Nonlinear actions of Lie groups

Applications
Classical mechanics and field theory
Geometric quantization
Hydrodynamics
Elastomechanics
Econometrics
Social theory
Morphogenesis
Network theory

and other topics of pure and applied global analysis.
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AUDIE“CES

Sub-Series A. The advanced texts will provide reports on theory or
applications from the research frontier in expository style for specialists, or
for nonspecialists who have the prerequisite mathematical background. For
example, graduate students of science or engineering as well as mathematics
will find them manageable.

Sub-Series B. The basic texts will provide a complete curriculum of -
essential prerequisites, starting with advanced linear algebra and calculus,
for the advanced texts of Sub-Series A. These texts will be suitable for
advanced undergraduate courses in pure and applied mathematics, or as
reference works for research in engineering, the sciences, or mathematics.

UNIQUE FEATURES

Through the basic texts (Sub-Series B) covering all the prerequisites in-
a uniform style and the advanced texts (Sub-Series A) building on this
foundation, it will be possible for readers to study the detailed applications
of global analysis to their own fields (as they appear in the series), to form
independent evdluations of the new methods, and to master the techniques
for their own use if it is justified. ‘

Sub-Series, B starts from the post-calculus level, in textbook format
with worked examples, exercises and adequate illustrations. The series will
give a complete library of prerequisites, together with new contributions to -
global analysis and some outstanding examples of its applications, illustrat-
ing the new methods in applied mathematics. All the texts will be in English.
and conform a5 far as possible to a common notational scheme. :

RALPH ABRAHAM
PHILIP J. HOLMES
JERROLD E. MARSDEN



PREFACE

The purpose of this book is to provide core background material in
global analysis for mathematicians sensitive to applications and to physi-
cists, engineers, and mathematical biologists. The main goal is to provide a
working knowledge of manifolds, dynamical systems, tensors, and differen-
tial forms. Some applications to Hamiltonian mechanics, fluid mechanics,
electromagnetism, and control theory are given in Chapter 8, using both .
invariant and index notation. Detailed treatments of these and additional
applications are planned for other volumes in the series. The book does not
deal with Riemannian geometry in-detail or with Lie groups or Morse
theory. These too are planned for a subsequent volume.

Throughout the text special or supplementary topics occur in boxe&
This device enables the reader to skip various topics without disturbing the
main flow of the text. Addmonal background material in the-appendices 1s.
given for completeness, to minimize the necessity of consulting too many
outside references. sl f

We treat finite and infinife-dimensional manifolds simultaneously. This
is partly for efficiency of exposition. Without advanced applications, using,
say, manifolds of mappings, the study of infinite-dimensional manifolds is
hard to motivate, except for its intrinsic interest. Chapter 8 ‘gives a hint of
these applications. In fact, some readers may wish to skip the infinite-
dimensional casé altogether. To aid in this we have separated into boxes
many of the technical points peculiar to the infinite-dimensional case.

XV
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xvi PREFACE

Our own research interests lean heavily toward physical applications,
and the choice of topics is partly molded by what has been and remains
useful for this kind of research. Some interesting technical side issues not
consistent with these goals have been omitted or relegated to boxes.

We have tried to be as sympathetic to our readers as possible, by
providing ample interesting examples, exercises, and applications. When a
computation in coordinates is easiest, we give it and don’t try to hide things
behind complicated invariant notation. On the other hand, index-free
notation can often provide valuable geometric, and sometimes computa-
tional, insight so we have tried to simultaneously convey this flavor.

The only prerequisites required are a solid undergraduate course in
linear algebra and a classical course in advanced calculus. At isolated points
in the text some contacts are made with other subjects. For students, this
provides a good way to link this material with other courses. These links do
not require extra background material, but it is more meaningful when the
bond is made. For example, Chapter 1 (and Appendix A) link with point-set
topology, the boxes in Chapter 2 and Appendices B, C, D, are connected
with functional analysis, Section 4.3 relates to ordinary differential equa-
tions, Chapter 3, Section 7.5, and Appendix E are linked to differential
topology and algebraic topology, and finally Chapter 8 on applications is
connected with applied mathematics, physics, and engineering.

This book is intended to be used in courses as well as for reference. The
sections are, as far as possible, lesson sized, if the boxed material is omitted.
For some sections, like 2.5, 4.2, or 7.5 two lecture hours are required. A
standard course for mathematics graduate students, for example, could omit
Chapter 1 and the boxes entirely and do Chapters 2 through 7 in one
semester with the possible exception of Section 7.4. The instructor could
then assign certain boxes or appendices for reading and choose among the
applications of Chapter 8 according to taste. A shorter course, or a course
for advanced undergraduates probably should offf all boxes, spend about
two lectures on Chapter 1 for reviewing backgrourd point set topology, and
cover Chapters 2 through 7 with the exception of Sections 4.4, 7.4, 7.5 and
all the material relevant to volume elements induced by metrics, the Hodge
star, and codifferential operators in Sections 6.2, 6.4, 6.5, and 7.2. A more
applications oriented course could omit Chapter 1, review without proofs
the material of Chapter 2 and cover Chapters 3 to 8 omitting the boxed
materials and Sections 7.4 and 7.5. For such a course the instructor should
keep in mind that while Sections 8.1 and 8.2 use only elementary material,
Section 8.3 relies heavily on the Hodge star and codifferential operators,
while Section 8.4 consists primarily of applications of Frobenius’ theorem
dealt with in Section 4.4. The appendices, included for completeness,
contain technical proofs of facts used in isolated places in the text.
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The notation in the book is as standard as conflicting usages in the
literature allow. We have had to compromise among utility, clarity, clumsi-
ness, and absolute precision. Some possible notations would have required
too much interpretation on the part of the novice while others, while precise,
would have been so dressed up in symbolic decorations that even an expert
in the field would not recognize them. We have used boldface symbols to
help the reader distinguish objects; for the most part, linear spaces, linear
operators and abstract tensor fields are in boldface italics, while manifolds,
points, point mappings, and tensor components are in lightface italics. Strict
compliance is not always possible. This usage is only to help the reader
distinguish symbols to which no further significance should be attributed.

In a subject as developed and extensive as this one, an accurate history
and crediting of theorems is a monumental task, especially when so many
results are folklore and reside in private notes. We have indicated some of
the important credits where we know of them, but we did not undertake this
task systematically. We hope our readers will inform us of these and other
shortcomings of the book so that, if necessary, corrected printings will be
possible.

The reference list at the back of the book is confined to works actually
cited in the text. These works are cited by author and year like this:
deRham [1955). i

During the preparation of the book, much valuable advice was pro-
vided by Alan Weinstein. Our other teachers and collaborators from whom
we learned the material and who inspired, directly and indirectly, various
portions of the text are too numerous to mention individually. We hereby
thank them all collectively. Finally, we thank Connie Calica for her careful
typing of the manuscript.

RALPH ABRAHAM
JERROLD E. MARSDEN
TuUDOR RATIU



BACKGROUND NOTATION

The reader is assumed to be familiar with usual notations of set theory
such as €, U, N and with the concept of a mapping. If 4 and B are sets .
and f: A— B is a mapping, we often write a — f(a) for the effect of the
mapping on the element a € A; “iff” stands for “if and only if” (=“if” in
definitions).

Other notations we shall use without explanation include the following:

R,C real, complex numbers
Z,Q integers, rational numbers
AXB Cartesian product 5
R",C" Euclidean n-space, complex n-space
(x',....,x")ER" point in R”
A\ B set theoretic difference
Iorld identity map
fY(B) inverse image of B under f
I, ={(x, f(x))|x € domain of f)
graph of f
infA infinimum (greatest lower bound) of 4 C R
sup A ) supremum ("léast upper bound) of A CR
€uver €y ‘ basis of an n-dimensional vector space
ker T',range T kernel and range of a linear transformation T
A end. of an example
[ ] end of a proof
v proof of a lemma is done, but the

proof of the theorem goes on.

These modifications of the Halmos symbol B are notations of Alan
Weinstein.
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CHAPTER 1

Topology

The purpose of this chapter is to introduce just the right amount of
topology for later requirements. It is assumed that the reader has had a
course in advanced calculus and so is acquainted with open, closed, com-
pact, and connected sets in Euclidean space (see for example Marsden
[1974a] and Rudin [1976]). If this background is weak, the reader may find
the pace of this chapter too fast. If the background is under control, the
chapter should serve to collect, review, and solidify concepts in a more
general context. ‘ '

A key concept in manifold theory is that of a differentiable map
between manifolds. However, manifolds are also topological spaces and
differentiable maps are continuous. Topology is the study of continuity in a
general context; it is therefore appropriate to begin with it.

Topology often involves interesting excursions into pathological spaces
and exotic theorems. Such excursions are deliberately minimized here. The
examples will be ones most relevant to later developments, and the main
thrust will be to obtain a working knowledge of continuity, connectedness,
and compactness. ’

1.1 TOPOLOGICAL SPACES

Abstracting our ideas about open sets in R”, we shall first consider the
notion of a topological space.



2 TOPOLOGY

1.1.1 Definition. A topological space is a set S together with a collection O
of subsets called open sets such that

(Tl) 2€0and S€0;
(T2) If U,,U, €0, then U N, €0;
(T3) The union of any collection of open sets is open.

A basic example is the real line. We choose S =R, with O consisting of
all sets that are unions of open intervals. Thus, as exceptional cases; the
empty set @€ 0 and R itself belong to O. Thus (T1) holds. For (T2), let U,
and U, € 0; to show U, N U, € O, we can suppose U, NU, =@ . If xeU; N,
then x lies in an open interval ]a,, b,[CU, and x € ]a,, b,[ CU,. Let
la,, b,[N]a,, b,[ =]a,b] (so a=max(a,,;a,) and b=min(b,,b,)). Thus
x € la, b[ c U, N U,. Hence U, N U, is the union of such intervals, so is open.
Finally, (T3) is clear by definition.

Similarly, R" may be topologized by declaring a set to be open if it is a
union of open rectangles. An argument similar to the one just given shows
that this is a topology, called the standard topology on R". Open intervals in
R and open rectangles in R” are each examples of a basis % for a topology;
i.e., every open set is a union of sets in B.

Any set S can be topologized in an obvious manner in two ways. The
trivial topology on S consists of O = (@, S}. The discrete topology on S is
defined by O = (4|4 C S); i.e., O consists of all subsets of S.

Topological ‘spaces are specified by a pair (S,0); we shall, however,
just write S if there is no danger of confusion.

1.1.2 Definition. Ler S be a topological space. A set A C S is called closed
if its complement S\ A is open. The collection of closed sets will be denoted C.

For example, the closed interval [0, 1] C R is closed as it is the comple-
ment of the open set ]—o00,0[U]1, oo].
1.1.3 Proposition. The closed sets in a topological space satisfy:

(C1 @eCandS€C;
(C2) IfA,,A,€Cthen A,U A, €C;
(C3) the intersection of any collection of closed sets is closed.

Proof. (Cl) follows from (T1) since &= S\ S, §=S\ 2. The relations

S\(4,V 4,) =(S\4,)U(5\4,)
and '

iel

s\(NB)= U (s\B)
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for (B}, a family of closed sets show that (C2),(C35 are equivalent to
(T2),(T3), respectively. ®

Closed rectangles in R” are closed sets, as are closed balls, one-point
sets, and spheres. Not every set is either open or closed. For example, the
interval [0, 1] is neither an open nor a closed set. In the discrete topology on
S any set A C S is both open and closed, whereas in the trivial topology any
A= or S is neither.

Closed sets can be used to introduce a topology just as well as open
ones. Thus, if C is a collection satisfying (C1)—-(C3) and O consists of the
complements of sets in C, then O satisfies (T1)-(T3).

A considerable amount of topological terminology turns out to be
useful. We shall introduce some now.

1.1.4 Definition. An open neighborhood of a point u in a topological space

S is an open set U such that u € U. Similarly, for a subset A of S, U is an open
" neighborhood of A if U is open and AC U. A neighborhood of a point (or a

subset) is a set containing some open neighborhood of the point (or subset).

If x €R, neighborhoods of x are, for example, ]x —1,x + 3], ]x — ¢,
x + ¢[ for any > 0, and R itself; only the last two are open neighborhoods.
The set [x, x +2[ contains the point x but is not one of its neighborhoods.

In the trivial topology on a set S, there is only one neighborhood of any
point, namely S itself. In the discrete topology any subset containing p is a
neighborhood of the point p € S, since { p} is an open set.

1.1.5 Definition. A ropological space is called first countable if for each
u € S there is a sequence (U,,U,,...}={U,) of neighborhoods of u such that
for any neighborhood U of u, there is an n such that U, C U. The topology is
called second countable if it has a countable basis.

Topological spaces of interest to us will largely be second countable.
For example R” is second countable since it has the countable basis formed
by rectangles with rational side length, centered at points all of whose
coordinates are rational. Clearly every second-countable space is also first
countable, but the converse is false. For example if S is an infinite
noncountable set, the discrete topology is not second countable, but S is
first countable, since { p) is a neighborhood of p € S. The trivial topology on
S is second countable (see Exercises 1.11, 1.1J for more interesting counter-
examples). :
¥ A basic fact about second-countable spaces is the following statement
due to Lindelof.
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1.1.6 Proposition. Every covering of a set A in_a second-countable space
S by a family of open sets U, (that is U JU,D A) contains a countable
subcollection (U, ,U,, ...} also covering A.

Proof. Let B = (B,) be a countable basis for the topology of S. For each
p € A there are indices n and a such that p € B, CU,. Let %' = (B, |there
exists an a such that B, C U,). Now let U, be one of the U, that includes the
element B, of ®’. Since B’ is a covering of 4, the countable collection (U, }
covers A. W

The terminology of closure and interior is also very useful.

1.1.7 Definition. Ler S be a topological space and A C S. Then the closure
of A, denoted cl(A) is the intersection of all closed sets containing A. The
interior of A, denoted int(A) is the union of all open sets contained in A. The
boundary of A, denoted bd( A) is defined by

bd(4) = cl(4)Nc(S\ 4)

By (C3), cl(A) is closed and by (T3), int(4) is open. Note that as bd(A4)
is the intersection of closed sets, bd(A4) is closed, and bd(A)=bd(S\ A4).
Note that 4 is open iff A =int(A4) and closed iff 4 =cl(A).

For example, on R,

cl([O,l[)=[0,l'], int([0,1[) = (0,1) and bd([0,1])={0,1}.

The reader is assumed to be familiar with examples of this type from
advanced calculus.

Some notions building on these are as follows.

1.1.8 Definitions. A subset A of S is called dense in S if cl(A)=S and is
called nowhere dense if S\cl(A) is dense in S.

S is called separable if it has a countable dense subset.

A point in S is called an accumulation point of the set A if each of its
neighborhoods contains points of A other than itself. The set of accumulation
points of A is called the derived set of A and is denoted by der(A).

A point of A is said to be isolated if it has a neighborhood in S containing
no other point of A than itself.

The set A =[0, I[U{2) in R has 2 as its only isolated point, int(4) = ]0, 1,
cl(4)=[0,1]U{2} and der(A4)=[0,1]. In the discrete topology on a set S,
int{ p}=cK p}={p), for any p € S.



