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FOREWORD TO VOLUME 1

THE study of the physical properties of metals has developed through.
a number of stages. The first was that in which the mechanical
properties were correlated empirically with the heat treatment to
which the metal had been subjected and, sometimes, to the chemical
composition. At this stage the successful treatment of metals was an
art, in the sense that experience rather than understanding led to the
most satisfactory results. The next stage, in which the internal struc-
ture of the metal was examined, was based originally on the use of the
microscope and it was found that many experimental facts could be
explained in terms of effects that were of the right size to be seen under
magnifications of less than about two thousand. The development of
the x-ray diffraction techniques allowed phenomena of a smaller order
of magnitude to be examined, and much of the existing information
was found to be comprehensible in terms of the geometry of the crystal
structure of the various phases that were visible under the microscope.

More recent development can perhaps best be discussed by a division
of the field into what may be termed ‘statics’ and ‘dynamics’. Under
the former heading is the study of the conditions which govern the
structure of a metal or alloy when it is in thermodynamic and mechanical
equilibrium. The theories of the phases that are present in equilibrium
and of the elastic constants have made remarkable progress in terms of
rapidly developing theory of the part played by electrons in the metal.

Under the heading ‘dynamic’ effects we may include both the
conditions governing the approach to equilibrium in respect of the
phases that are present, in which diffusion plays an important part,
and the response of a metal to forces which are sufficient to cause
non-recoverable or plastic mechanical deformation.

These and associated subjects have advanced so rapidly that it has
become difficult for research workers in one part of the field to remain
up to date in other branches. It is the purpose of this volume, which
is the first of an annual series, to present authoritative reviews of the
present state of knowledge in specialized aspects of the field that includes
both physical metallurgy and metal physics. Itis not intended that any
one volume should form a complete textbook on these subjects. It is
hoped rather that a few subjects of current interest should be discussed
rather fully so as to cover, in the course of several years, all the more
important aspects in which progress is being made. In order to make
the series reasonably self contained it is proposed that the necessary
‘historical’ background should be included the first time a particular
subject is discussed. Subsequent articles on such subjects will generally
only cover the more recent progress.

B. CHALMERS
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1
INTERNAL FRICTION IN METALS

A. 8. Nowick

THE capacity of a vibrating solid to convert its mechanical energy of
vibration into heat, even when so well isolated that energy losses to its
surroundings are negligible, is called internal friction. The most common
manifestation of internal friction is the damping, or loss of vibration
amplitude, of a freely vibrating body. Interest in internal friction in
metals undoubtedly extends back to prehistoric times, to the earliest
cymbals and bells. Modern investigation has followed two different
channels. On the one hand there has been widespread interest in
damping for engineering applications; depending on the particular
application, one may wish to obtain either a very high or a very low
rate of damping. In work of this kind, the effect of heat treatments and
alloying elements on the damping characteristics of engineering materials
is investigated and commonly reported in terms of a quantity called
“damping capacity.” Vibration amplitudes employed are commen-
surate with those that ocour in practice. An adequate review of this
phase of the subject would in itself require a sizeable article. A second
approach to internal friction, with which the present review is con-
cerned, is the use of damping as a tool to study internal structure and
atomic movements in solids. This is a relatively new field of investiga-
tion and has been developing rapidly. Interest is focused on the origin
and mechanism of internal friction rather than its desirability, and the
vibration amplitudes employed are very small.

A perfectly elastic material will not produce damping since, under
oscillatory conditions, stress and strain are always in phase, and
consequently no mechanical hysteresis or loss of vibrational energy can
take place. Damping is, therefore, a result of the non-elastic behaviour
of materials. The fact that it can be observed at stress levels far below
those at which plastic flow occurs, shows that there is really no such
thing as an ‘“elastic range.” In recent years there has been a great
increase in understanding of those physical processes that result in
non-elastic behaviour, and, therefore, in damping, of metals at low
stress levels. Review articles on this subject, written in the period
1939-1943,-% emphasize three main sources of damping: thermo-
elasticity, ferromagnetic effects, and the internal stresses associated
with cold work, or dislocations. Of these, the last was least understood,
in the sense that the mechanism by which these internal distortions act -
to produce damping was not established. During the war and early
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post-war period intensive investigations of internal friction, particularly
by ZeNEr and co-workers, brought to light other sources of internal
friction, including stress relaxation across grain boundaries and stress-
induced ordering. These last two mechanisms together with thermo-
elastic internal friction fitted into a scheme of non-elastic behaviour
which ZENER? called anelasticity, the development of which culminated
in his book? in 1948, In the treatment of anelasticity it is shown that
not only internal friction but several related static effects (recoverable
creep, stress relaxation, and elastic after-effect at low stress levels)
result from this type of non-elastic behaviour. Only internal friction
that does not depend on the amplitude of vibration is considered in this
treatment. The impact of this important work has been so great as to
lead to the widespread misconception that all internal friction at low
amplitudes can be explained in terms of anelasticity. The internal
friction originating in cold work is an appropriate example; theories
attempting to explain observed effects in terms of the scheme of anelas-
tic phenomena,’—8 have not met with notable success. In fact, after
READY 1 ghowed that cold work internal friction in single crystals is
strongly amplitude dependent, the writer demonstrated: 12 that this
behaviour originates in a mechanism of static hysteresis, which is quite
different from anelasticity.

In the present article, an attempt is first made to provide a pheno-
menological description of the general features of non-elastic deforma-
tion which is sufficiently general to include, as special cases, anelasticity
as well as static hysteresis and amplitude dependent internal friction.
The first three main sections deal with this phenomenological approach.
It is shown that internal friction cannot be divorced from an equally
important effect : the change in the effective elastic modulus resulting
from the non-elastic behaviour, which is called ‘“the AM-effect”.
Following the phenomenological treatment, the various experimental
methods used to measure internal friction are reviewed. The remainder
of the article is devoted to the physical origins of internal friction. All
sources of damping involve an internal re-arrangement vhat takes place
under stress. There are three types of re-arrangements that have been
studied: thermal (the thermo-elastic effect),” magnetic, and atomic
re-arrangements. All of these are considered in the present article,
although emphasis is placed upon the latter category, since most recent
developments are in this field and it is the least adequately reviewed.
Included in the category of atomic re-arrangements are diffusion effects,
relaxation across interfaces, and the motion of dislocations.

PHENOMENOLOGICAL THEORY: HOMOGENEOUS STRAIN

In most vibration experiments the specimen under investigation is
subjected to a non-homogeneous strain. A discussion of the elastic and

2
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non-elastic behaviour of the specimen is, therefore, complicated by the
dependence of stress and strain on position in the specimen. In this
section, the principles of non-elastic behaviour will be introduced under
the assumption that we are dealing either with a small element of a
specimen within which the strain is uniform, or with a complete speci-
men throughout which the strain is the same at any instant. The latter
condition can be realized, for a specimen of appropriate shape, by the
introduction of an auxiliary inertia member relative to which the
inertia of the specimen itself is negligible. For example, it is possible to
set up a homogeneous shear strain by torsional vibration of a hollow
tube to which is attached a heavy inertia member.

For simplicity of notation, it is assumed that the stress system within
the specimen can be defined by a single component o. Furthermore,
only the principal strain &, corresponding to the stress o, need be
considered, since other strain components do not enter into expressions
for the work done by the stress. The symbol M is used to represent the
appropriate elastic modulus that relates stress and strain.

As already mentioned, in order for internal friction to occur, the
oscillatory stress and strain must not be in phase with each other and,
in fact, in order that energy be dissipated, the strain must lag behind
the stress. Let us represent this angle of lag by ¢. Then ¢ is a con-
venient measure of internal friction, since the energy dissipated in a
eycle of vibration goes to zero when ¢ approaches zero. It is convenient
to use complex notation to represent the various phase relationships.
Thus, the variation of stress with time is expressed as

¢ = g6t e e oo (D
where o is the angular frequency of vibration (w = 2=f, where f is the

number of vibrations per second) and o, is the stress amplitude.
Correspondingly, the strain is

& = (g — 1&5)e™™* S )]

where the quantities ¢ and e, are the amplitudes of the components

of strain in phase with and 90° behind the stress, respectively. Clearly,

tan ¢ = gyfe, A )

Throughout this article it will be assumed that the internal friction is

small, i.e. &; < ¢; and tan ¢ ~ ¢. This approximation greatly simpliSes

the relations between various measures of internal friction, and there

have been very few experiments to which it does not apply. An
appropriate definition for the dynamic modulus, M, is

M - 0'1/81 A e e e (4)

It is also convenient to define the complex modulus, M, as the ratio of
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stress to strain, using the complex notation of equations (1) and (2).
Thus, :
- =3 % ~ M(I4+id) . . .. (5)

6 —ieg &(l—itang)

where the approximation of small ¢ has been introduced. The real part
of the complex modulus is M and the ratio of the imaginary part to the
real part is the phase angle ¢, which is our present measure of internal
friction. The complex modulus, therefore, contains the essential para-
meters pertaining to the vibration.

The occurrence of non-elastic behaviour means more than the fact
that ¢ % 0. In order to discuss the concept of non-elastic behaviour we
must consider the law that describes the interrelation of stress and
strain, not only under conditions of oscillation, but also under static
conditions, e.g. the application of a constant stress. A perfect lyelastic
substance is one for which the strain is uniquely determined by the
stress at any instant, i.e. & monotonic functional relationship exists
between the two quantities. This function only deviates from Hooke’s
law of proportionality when the strain is large. Since we are concerned
entirely with small deformations, a simple law of proportionality may
always be used to represent the stress-strain equation for a perfectly
elastic substance. A material that shows non-elastic behaviour is one for
which the stress-strain equation is not a simple proportionality but
assumes a generalized form, in which, for example, there may be terms
involving time derivatives of stress and strain or terms that represent
multiple-valued functional relationships. For self consistency with the
requirement of small damping, we may lLimit ourselves to stress-strain
equations where all these non-elastic terms are very much smaller than
the elastic terms. If the stress-strain equation is linear in stress, strain,
and time derivatives of these quantities, it can be solved by the substi-
tution of equations (1) and (2) to obtain the complex modulus directly.
If, as a result of the non-elastic behaviour, terms which are nonlinear
appear in the stress-strain equation, an exact solution can no longer be
obtained by the substitution of a simple harmonic stress and strain, but

_requires complete Fourier series for these quantities, i.e. stress and

strain may be periodic but not sinusoidal. An approximate solution
can be obtained3 if we ignore everything but the fundamental Fourier
components of stress and strain and determine the complex modulus
from these quantities. The parameters M and ¢ obtained from the real
and imaginary parts of this complex modulus will depend on the ampli-
tude of vibration, as a consequence of the nonlinear terms. We then
speak of “amplitude dependent internal frictjon’ and, in general, also
of an “amplitude dependent dynamic modulus.” This method, which
converts a nonlinear problem into an approximately equivalent linear
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problem with parameters dependent on the amplitude of vibration, is
known as the method of equivalent linearization.® The approximation
is a good one when the nonlinear terms are small, a condition which is
certainly valid in the present case, since all nonlinear terms are among
the small non-elastic terms.

We will now consider two well-known theories of non-elastic behavi-
our which lead to very simple stress-strain equations.

The Voigt Solid

In order to account for non-elastic behaviour of materials, VomvrM
made the assumption (previously introduced by STokEs! and others)
that, in addition to the elastic stress Me there is a frictional resistance
proportional to the rate of strain é&. We, therefore, obtain the stress-
strain equation

c = Me+ % R ()]

This is a linear equation and, therefore, leads to an amplitude indepen-
dent internal friction. A material that can be described in terms of
equation (6) is called a Voigt solid. The complex modulus is
M = M + iom, so that the internal friction is given by

¢ = (n/M)w e (D

The internal friction of a Voigt solid is, therefore, proportional to the
frequency of vibration and its dynamic modulus is a constant
(independent of frequency). '

The Voigt assumptions are most often used in textbooks on theoretical
physics,'® to discuss the damped oscillations of a mass point attached
to a weightless spring. The purpose of such treatments is usually to
show how internal friction manifests itself in free and forced vibrations.
- No attention is usually paid to the question of the frequency dependence
of internal friction.

The Mazwell Solid
An alternative description of non-elastic behaviour is due to MAXwELL.1?

Rather than use the nebulous concept of an internal frictional force,
this approach first assumes that the strain is made up of two parts:

e=¢& -+ & S €))
where &’ is the perfectly elastic strain which obeys Hooke’s law
& =o/M' e e (9

and ¢" is the non-elastic strain which results from internal re-arrangement
and is not proportional to the stress. Equation (9) is to be regarded as
the definition of M’. MaxwgLL further assumes that the non-elastic
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term &” obeys the Newtonian viscosity equation, i.e. the flow & is
proportional to the stress, or

& =& . ... (10)

The stress-strain equation is obtained by combining equations (8), (9)
and (10):

e'=l%,+§o' c ... (1

From this equation and the assumption of small internal friction, we
obtain

M=M; ¢=_EtMw C . (12)

Again the dynamic modulus is a constant, but now ¢ is inversely
proportional to the frequency. The amplitude independence of ¢ is
related to the linearity of equation (11).

It has been known for many years that the experimentally observed
frequency dependence of internal friction, for most materials, is in
agreement with neither the VoreT nor the MAXWELL descriptions of
non-elastic behaviour. Another shortcoming of these descriptions is the
prediction, in both cases, that the dynamic modulus of the system is
unaffected by the non-elastic behaviour, except for terms of second order
in the internal friction which are omitted here. Experimental observa-
tions show that the occurrence of internal friction is often accompanied
by a fractional decrease in the dynamic modulus, of the same order of
magnitude as the internal friction.

Various methods have been suggested for the generalization of the
Voigt and Maxwell solids to obtain a more widely applicable theory.
These methods regard the properties of an actual solid as a super-
position of those of a large collection (finite or infinite) of Voigt or of
Maxwell solids each with different parameters. In this way it is possible
to introduce into the description of the non-elastic behaviour of a
material as many arbitrary parameters as are necessary to describe its
observed behaviour. Such superposition methods have been particularly
popular in the study of mechanical properties of high polymers.8,1®
They are limited, however, to the treatment of materials whose internal
friction is independent of the amplitude of vibration, and also, cannot
be used for the study of static hysteresis (described in a later section).
It will, therefore, be more suitable for us to introduce a different
approach, which is sufficiently general to include all phenomena that

lead to internal friction in metals.
The Generalized Mazwell Approach

The first assumption of the Maxwell description is that a material
under stress may undergo internal re-arrangement leading to a non-
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elastic strain ¢” in addition to the elastic strain ¢’. This assumption,
expressed by equations (8) and (9), is very generally applicable to non-
elastic phenomena. On the other hand, we will drop the highly restric-
tive second assumption expressed by equation (10) and, for the present,
leave unspecified the equation that describes the non-elastic strain &”.
Without such an equation, we cannot obtain-the stress-strain relation
required to complete the description of the behaviour of a material.
Possible equations for ¢” will be discussed in a later section ; at present,
phase relationships will be discussed in general terms.

-’ I
| &'
Ly

Jrq

|
s —
!

Fig. 1. Phase relationships between the stress and the elastic
and non-elastic strain

If the stress (or its fundamental Fourier component) is represented
by equation 1, the elastic strain is,

g = g'eit ... (13)

The non-elastic strain ¢” will, in general, be resolvable into a component
in phase with the stress and one lagging by 90°, or

& = (" — 1gy")e"™* e (19)
where the quantities ¢, &;,” and &,” are appropriate amplitudes and are
real and positive quantities. Fig. 1 shows the phase relationships
between stress and components of strain. This diagram is not drawn to
scale, since the assumption of small internal friction and non-elastic
effects means that |¢”| < |&’|. With this approximation ¢ = &' (to
first order), and equation (3) becomes

SN N .o .. (18)

The internal friction is, to the first approximation, dependent only on
the component of &” out of phase with stress. The result is not surprising
gince only the component of strain out of phase with the stress will
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contribute to energy dissipation. The dynamic modulus M is given by
(see equation (4))
o
M=—_2_-~MQ1-—4¢g") ... . (18
o + & ( &'la (16)
where M’ is defined by equation (9). Thus, since the presence of non-
elastic behaviour may increase the in-phase component of strain, the
dynamic modulus is less than (or equal to) M’, and the difference,
AM = M' — M is given by

AM/M = &"[e SRR ¢t )

This lowering of the elastic modulus because of the existence of a non-
elastic strain will be called the AM effect. This discussion has, therefore,
shown that internal friction and the AM effect are closely related con-
sequences of the occurrence of non-elastic strain, the first resulting from
the component out of phase with stress, and the second from the
component in phase with the stress. It is also clear that if the equation,
thus far unspecified, that describes ¢” is nonlinear, the ratios ¢,"/¢," and
&"/e,’ will be functions of strain amplitude. Specific forms for this
equation will be considered in the section called “Viscoelasticity and
Static Hysteresis.”

Measures of Internal Friction

The relationship between various measures of internal friction, as well
as of the AM effect, will now be considered. As long as the discussion
of non-elastic behaviour is restricted to the use of quantities such as the
complex modulus and phase angle ¢, it is possible to treat in the same
way, either a small element of material or a complete specimen under
homogeneous strain. If quantities such as the logarithmic decrement
and the width of a resonance peak are to be considered, it is necessary to
deal with an entire specimen in a particular mode of vibration. For
simplicity, we will discuss here only specimens vibrating under homo-
geneous strain, and in the next section will show how the present dis-
cussion is generalized when the strain is not homogeneous. It is required,
then, that a relatively large inertia member be attached to the specimen
under consideration. If 6 represents the displacement of the inertia
member, I its “inertia,” F,and F, the ‘“force” exerted upon this member
by the specimen and the externally applied ““force,” respectively, then
the equation of motion of this member is

I6=F,+ F, ... . (18)

(In the example of the torsion of a hollow tube mentioned earlier, 6 is
simply the angle of twist, I the moment of inertia, and the quantities

8
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F are torques. On the other hand, if the vibration is under a longitu-
dinal load, § becomes the longitudinal displacement, I the attached mass,
and F a force.) The quantity 0 is essentially the strain, ¢, throughout
the specimen, except for a geometric constant of proportionality,
while F, is proportional to the stress ¢, but opposite in sign. Inasmuch
as 0 = e (by the definition of M, equation (5)), with M = M(1 + id),
we may also write

F,=—k; k=Fk1+ ip) cee e (19

where s a complex “force constant.” Equation (18) may then be solved
in the case of forced vibrations with an impressed angular frequency w,
i.e. when the applied ‘force” is taken as sinusoidal of the form
F, = F**. Under steady state conditions, the equation will have a
solution of the form 6 = 6,¢*, where 0, is, in general, complex. (If the
stress-strain equation is nonlinear, § will actually be representable by a
complete Fourier series, but as mentioned earlier, we will ignore all but
the fundamental Fourier components.) When this solution and
equation (19) are substituted into equation (18), an equation for 6,
is obtained :

_ Fo/I
where ' : I
: o = kI C . (21
The real quantity |6,|2 is given by
2
B0l = el (22)

02— 0?) + ot

This is the well-known equation for a resonance curve (a plot of |0,|?
versus w) with a resonant angular frequency (at which the amplitude of
vibration is & maximum) equal to w, If the frequencies at which
[6o]2 falls to half the maximum value are denoted by w, and w, it
follows that .
: Wg — Oy 1
=T T
The internal friction ¢ may, therefore, be obtained in forced vibration as
_the ratio of the width of the resonance curve (square of displacement
amplitude versus frequency) at half maximum divided by the resonant
frequency Inasmuch as the reciprocal of this ratio is called the “Q”
of an electrical circuit, the symbol @' has been adopted by some
authors!s 20 ag a measure of internal friction; from equation (23), @ is
equal to the phase angle ¢ between stress and strain. The study of
internal friction by means of a resonance curve is complicated when the

9
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internal friction is amplitude dependent. When ¢ is itself a function of
{0o], and in fact (as commonly observed experimentally) an increasing
function of |6,|, the height of the resonance peak will be determined
by the value of ¢ at maximum amplitude, but the peak is broader than
for the case of constant internal friction. Although the resonance peak
is broadened by the amplitude dependence of ¢, it may still be sym-
metrical about w = w, (to terms of first order in the internal friction) so
long as there is no AM effect. In general, however, amplitude depen-
dent internal friction is accompanied by an amplitude dependent
dynamic modulus M. This means that & is a function of amplitude and,
therefore, that w, as well as ¢, in equation (22), is dependent on |6,|.
In the usual case, where the AM effect increases (and, therefore, w,
decreases) with increasing amplitude, it is readily shown from equation
(22) as well as experimentallyl! that the resonance curve falls off faster
on the low frequency side than on the high frequency side. If the ampli-
tude dependence of w, is sufficiently large, this asymmetry may become
so great that the resonance curve bends over on itself and becomes
double valued on the low frequency side. Thus, discontinuities may be
observed in tracing this curve experimentally.2

When amplitude dependent effects are studied by forced vibration
methods, it is usually preferable to work at exactly the resonant
frequency where, from equation (22), the amplitude at resonance

|6o™| is
[06™] = Fo/(Io,*$) C .. (24)

It is necessary to determine the maximum amplitude |f,™| and the
force F, in order to obtain ¢; both ¢ and w, are then known at the
specific amplitude |6,"|. By variation of F, it is then possible to
obtain these values at any other displacement amplitude. Whereas, in
principle this method is a very simple one for determination of the
internal friction and AM effect as a function of amplitude, the quantities
F, and |0,™| are often difficult to obtain experimentally. In the piezo-
electric method (to be discussed in a subsequent section) these quantities
are readily calculated, so that this method has been particularly suitable
to the study of amplitude dependent internal friction. In other
methods of forced vibration, it is more convenient to keep ¥, constant
and determine @ (equation (23)), which requires only a knowledge of
relative amplitudes and does not require that Fy be known. The latter
methods are, therefore, only useful when internal friction is independent
of amplitude. '

In addition to the possibility for studying internal friction by the
determination of the resonance curve in forced vibrations, the oldest
and most popular methods are related to determination of the damping
of free vibrations, where vibrations, once excited, are allowed to continue,
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with no external forces applied to the system; the rate of decrease of
amplitude is then determined. In order to solve the equation of motion
18, for F, = 0 (no external forces), we substitute a solution of the form

0 = 04,™; &= (1l + 18/2m)

which represents exponentially damped oscillations, if 4 is & constant.
(6, is now real.) When this solution is substituted into equation (18),

and cognizance taken of equation (19), we obtain: I&? = k; if real and
imaginary parts are now separately equated, and second order terms in
internal friction neglected, it is found that

ol =k/I; 8=md .. .. (25)

The quantity 8 represents the natural logarithm of the ratio of ampli-
tudes in two successive vibrations and is called the logarithmic decrement
(or simply, the “decrement’’). When this quantity is small (as always
assumed in this discussion) it is also equal to the fractional decrease in
vibrational amplitude per cycle. In order to obtain 4 from experiment,
it is simply necessary to plot the logarithm of the amplitude of vibration
against the number of cycles of vibration. If internal friction is
independent of amplitude a straight line is obtained whose slope gives
the decrement directly. However, if internal friction is amplitude
dependent, this curve will not be a straight line, but its slope at any
amplitude will give the decrement at that particular amplitude. Thus
an entire curve of decrement versus amplitude of vibration may be
obtained from a single decay curve if the precision of the data is
sufficiently good.

Equations (21) and (25) also show that the natural frequency in free
vibration and the resonant frequency w, in forced vibration are the
same. This resonant frequency is affected by the existence of a AM
effect ; under conditions where non-elastic behaviour does not occur,
its value would be w’ = (k’/I)"/2, where k' is the force constant corres-
ponding to the modulus M’. Because of the AM effect, there will be a
decrease in resonant frequency and, if we define Aw = o’ — w,, wWe
find that

Avjw, = 3AM|M c ... (26)

Thus, the existence of a AM effect is synonymous with a decrease in the
resonant frequency or in the frequency of free vibration. Also, as
already noted, amplitude dependent internal friction is usually accom-
panied by an amplitude dependent dynamic modulus. This effect is
detected by a change of resonant frequency, or of the frequency of free
vibration, with a change in the amplitude of vibration.

Another measure of internal friction is the fractional decrease in
vibrational energy per cycle. Inasmuch as 8 is the fractional decrease
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in amplitude per cyele, and the vibrational energy is proportional to the
‘équare of the amplitude, it follows that

3= AW/2W

where W is the vibrational energy and AW is the loss of vibrational
energy in one cycle. A closely related quantity which is widely used in
engineering applications is the damping capacity which is the per cent
decrease in vibrational energy per cycle, so that: damping capacity
= 2004.

The relation between the various measures of mbema.l friction are
summarized as follows:

¢ =d/m = AW/2zW = @} Coo. @)

The last equality applies only when internal friction is amplitude
independent. These simple relationships between the various measures
of internal friction are derived under the assumption of small damping
and break down when this assumption is no longer valid. For large
damping, the relations between different measures of internal friction
depend on the mechanism of the damping and must be denved separately
for each case.2?

. The measured values of qS and AM/M will not only depend upon the
frequency and possibly the amplitude of vibration, but will also depend
on the type of stress employed. The relation between values obtained
in shear and in longitudinal vibration, for example, will depend on the
mechanism of the non-elastic behaviour.

PHENOMENOLOGICAL THEORY: NON-HOMOGENEOUS STRAIN*

In practice, damping is rarely, if ever, studied under conditions where
the mass is all concentrated in an auxiliary inertia member, and the
stress and strain are homogeneous throughout the “elastic’’ member.
Very often, the material whose elastic and non-elastic properties are to
be studied, will be in the form of a bar which is vibrated in a longitudinal,
transverse, or torsional mode of oscillation. Under these circumstances
the stress amplitude is not constant throughout the specimen. It will
be shown in this section, however, that the interpretation of vibration
experiments on these more realistic specimens is completely analogous
to the case of homogeneous strain, except that special attention is
required when the internal friction is amplitude dependent.

It is well known® that a perfectly elastic system will vibrate in
certain normal modes of vibration characteristic of the system. Once it
is vibrating in one normal mode it will continue to do so indefinitely.

* The reader who is not interested in the details of this section may omit the section
without loss of continuity.
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