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PREFACE

The aim of this work is to provide a consistent and systematlic treatment
of the topological structure of 3-dimensional manifolds. Our ultimate goal
would be to provide (as h.ave been done in dimension two) a ‘‘list’’ con-
taining exactly one 3-manifold from each homeomorphism class together
with an effective procedure for determmmg where a ‘“‘given’’ 3-manifold
belongs in this list. While this problem remains far from solution, the
period since Papakyriakopoulos’ proofs of Dehn’s lemma and the loop and
sphere theorems has produced considerable progress toward a solution and
we have attempted to provide an organized account of these developments.
We have excluded two topics: knot theory — which is a subject in itself
and for which there are several reference works ([10], [16], [75]) and a
consideration of local ptobiems (wild embeddings, etc.) which are nicely
covered in [13]. o

A basic principle in n-manifold topology is that k-dimensional homotopy
theoretic .information translates nicely to topolagical informatién,ptovided
the codimension, n—k, is sufficiently large (n—k> 3). This, together

with duahty, allows one to concentrate problems into the mlddle dimension, .

[n/21, prov1ded that n — [n/2] > 3. Of course this condition fails for

n< 5. Also for n= 3 the middle dimension, one, mvolves the fundamental _
group — the only nonabelian homotopy group. This may help explain why -
the techniques (and results) in 3-manifold theory differ from the general
theory (n'> 5) and why the algebra:c invariants ifvolved are almost en-
tirely group theoretic. The theme of this work;is the role of the funda-
mental group of a 3-manifold in determining its topological structure.

We assume the reader is familiar with the basic elements of algebraic

topology (covering spaces, Poincaré duality, the Hurewicz isomorphism
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theorem, and related topics). We will also make use of some facts from
piecewise linear @.l.) topology and from combinatorial group theory. ‘In.
Chapter 1 we give a summary of the p.l. topology (regular neighborhoodsl,
general position, etc.) which we use. We have included /ptoofs of several
theorems from group theory. Many of these, involving the structure of sub-
groups or quotient groups of a given group, translate (via covering spaces)
to topological theorems and we have given topological proofs. We suggest
that the reader may find it profitable to combine a study of 3-manifold
topology with a study of combinatorial group theory.

We have placed exercises at appropriate points throughout the text. We
have implicitly iﬁcluded'many others by leaving details to be supplied by
the reader.

Most of the material covered has appeared elséwhere in some form. We
have niade an effort to extend to nonorientable and/or bounded manifolds
results which were previously known only for orientablé and/or closed
manifolds. We feel that we have achieved some economy in presentation
by permuting tbe historical order of development. In particular, we have
introduced the concept of “incompressiblé surface’’ as early as possible.
Incompressible surfaces have turned out to be highly representative of the
manifolds containing them. Combined with the tools provided by the loop
and sphere theorems an analysis of the incompressible surfaces in a
3-manifold has proved to be the most effective appro.-;nch to understanding
the structure of the manifold. The most dramatic evidence of this is given
in Chapter 13 where these ideas are used to show that a large class of
3-manifolds are completély determined by their fundamental group systems.

We have included a list of references which we hope will give proper
credit to the original sources of the key ideas in the subject qnd will
provide sufficient leads to further stud_y. We have not attempted to provide
a complete list of related works and apologize for all omissions.

This work developed through courses given at Rice University. I wish .
to express my gratitude to my students and colléagues for the stimulus

- they have given me.
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CHAPTER I
PRELIMINARIES

We will approach the study of 3-manifolds from the piecewise linear
(p.1.) point of view. This choice is promptéd partly by tradition, partly by
the ease with which low dimensional polyhedra may 'be visualized, and
partly because of the technical convenience afforded by the “‘finiteness’’
of polyhedra. On the last point, while many of the standard arguments can
be translated from the p.l. theory to the differentiable theory by replacing
general position by transversality, there are some notable exceptions, e.g.
proofs of the loop theorem and the el.tistence of hierarchies, which do not
seem well suited to differentiable techniques. . Since each topological
3-manifold has a p.l. structure unique up to p.1. homeomorphism [71], [6]
and a differentiable structure unique up to diffeomorphism [73], [112], our
choice causes no loss of generality — theorems in the p.l. setting have
direct analogues in the differentiable setting (as well as in the locally
flaf topological setting). Our choice does prohibit consideration of “‘wild”’
(nonlocally flat) embeddings of submanifolds, and we do not consider such
matters. Thus we work entirely within the p.1. category; from Chapter 2
on the prefix p.1. will be undetstobd to be attached to the terms manifold,
submanifold, map, etc., unless otherwise indicated.

We will assume some basic elements from algebraic topology (e.g.
Poincaré duality, Hurewicz Theorem, etc.), from group theory (most of
which can be found in [63]), and from p.1. topology. For completeness we
state, in the remainder of this chapter, the facts from p.l. topology one
needs to begin with, and refer to [29], [47], [88], or [114] for a systematic
development of the theory.
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Definitions
We will denote n-dimensional Euclidean space by R", the unit ball
{x ¢ R":|x < 1} by B®, and the unit sphere {x ¢ R™: x| =1} by S"!

and will call a space homeéomorphic to B™(S"™1) an n-cell ((n—1)-sphere).

A (topological) n-‘manilold is a separable metric space each of whose
points has an open neighborhood homeomorphic to either R™ or to R: =
{x e RT: X, > 0}. The boundary of an n-manifold M, denoted oM, is the
set of points of M having neighborhoods homeomorphic to R_':; the
interior of .M, denoted Int M, is M—dM. By invariance of domain oM
is either empty or an (n—1)-manifold and doM = @. A manifold is closed
if it is compaét and has empty boundary and is open if it has no compact
component and has empty boundary.

We will view a simplicial complex as a locally finite collection, K, -
of (closed) simplexes in some R" safisfying

(i) f oeK and 7 is a face of o, then r ¢ K.

(ii) If o,7 ¢K, then o N7 is aface of both o and of 7.

We will denote the underlying space of K by |K|=Ufo:0eK}. By a sub-
division of K we mean a simplicial complex L such that L] = |K| (as -
sets) and each simplex of L lies in some simplex of K. For simplicial
complexes K,,K, amap f: |K1| N |K2| is piecewise linear provided
there exist subdivisions L, of K, and L, of K, with respect to .
which f is simplicial i.e. f takes vertices of L, to vertices of L, and
takes each simplex of L, linearly (in terms of barycentric coordinates).
onto a simplex of L,. It is an elementary, but not altogether trivial, fact
that the composition of piecewiée linear maps is piecewise linear.

A triangulation of a space X is a pair (T,h) where T isa simplicial
complex and h:|T}| » X is a homeomorphism. Two triangulations (Tyhy)
and (T,h,) are compatible provided h'2'1h1 ATl - |T,| is piecewise
linear. '

For K a simplicial complex and o a simplex of K, the star of o

with respect to K, st(o,K), is the subcomplex of K consisting of all

[y |
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sim’plexes of K which'meet o together with all their féces, and the link
of o with respect to- K, 1k(0,K), is the subcbmplex consisting of all
simplexes of K which’ do not meet ¢ but which are faces of some simplex
of K containing o.

_ A triangulation (T,h) of an n-manifold, M, is combinatorial provided
that for each vertex v of T, |1k(v,T)| is piecewise linearly homeomorphic
to an (n—1)-simplex or the boundary of an n-simplex according as h(v) ¢ M
or h(v) e Int M. This implies the more general fact that for each simplex o
of T, [1k(o,T)| is p.l. homeomorphic to an (n—dim ¢ — 1)-simplex or the
boundary of an (n—dim o)-simplex according as h(c) C oM or h(o) ¢ M.

If (K,h) is a combinatorial triangulation of M and L is a subdivision of
K then (L,h) is alsoa combinatorial triangulation of M (c.f. [2] or [77]).

A p.l. structure on a manifold M is a maximal, non-empty collection of

~ compatible combinatorial triangulations of M. By a p.l. manifold we will

mean a manifold M together with a p.1. structure on M. A map f:M,; M,
between p.l. manifolds is a p.l. map provided that for some (hence any)
triangulations (Ti'hi) i=1,2 of M in the associated p.l. structures
hz‘lfh1 (4T - |T2| is piecewise linear. We note [55] that there exist .
manifolds with inequivalent p.l. structures (i.e. homeomorphic p.l. mani-
folds which are not p.l. homeomorphic) and there exist manifolds with no
p.l. structure whatever. The possibility that such manifolds might still
admit (non-combinatorial) triangulations is still open and has some inter-
esting consequences (see [93]). As previously noted such difficulties do
not arise in low dimensions: each manifold of dimension at most 3 has a
p.l. structure unique up to p.l. homeomorphism.

A submanifold N of a p.l. manifold M is a p.l. submanifold if there
is a triangulation (T,h) in the p.l. structure on M and a subcomplex S
of T such that (S,h||S|) is a combinatorial triangulation of N (and
hence determines a p.1. structure on N). This definition allows local
knotting (i.e. the pair (|1k(v,T)|, |1k(v,S)|) need not be p.l. homeomorphic

to the standard sphere or ball pair of appropriate dimensions); however, if
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dim M < 3, all p.1. submanifolds are locally unknotted. A submanifold N
of M is properin M if NN JdM = oN.

By an orientation of a p.l. n-manifold, M, we will mean a consistent
orientation of the n-simplexes in a triangulation T of M. Here an
orientation of an n-simplex is an equivalence class, modulo even permuta-

tion, of orderings of its vertices. Using square brackets for equivalence

classes and the convention — [vo, vl,---,vn] to denote the opposite
orientation (i.e. [v1 »Vgrts vn]), the orientation on the (n—1)-face opposite
v; induced by the orientation [vg,--, vyl is defined to be (—l)l[vo,---,vi,---,vn].

Thus an orientation of M is a choice of an orientation for each n-simplex
of T such that if an (n—1)-simplex 't is a face of two n-simplexes o,
and o, of T, then the orientation on 7 induced from that on o, is
opposite to the one induced from o,. Clearly a compact, connected
n-manifold is orientable if and only if H M, M) = Z and an orientation

of M corresponds to a choice of generator for Z. We use the terms
oriented manifold to mean a manifold together with a choice of orientation
for it, and unoriented manifold to mean one which has not been oriented
(whether or not it is possible to do so), and nonorientable manifold to mean

one which can’t be oriented.

Basic Theorems 7
By ap.L n-cell (p.L. (n—1)-sphere) we mean a p.l. manifold p.l. homeo-

morphic to an n-simplex (its boundary).
Many of the elementary theorems, including the following three can be
found in the early works of J. W. Alexander [2], and M. H. A. Newman [76],

[77] as well as the reference works mentioned earlier.

1.1. THEOREM. If M isap.L n-sphere and C is a p.1. submanifold

which is a p.1. n-cell, then M—C is a p.l. submanifold which is a p.l.

n-cell.

1.2. THEOREM. If C isa p.l. n-cell, then any p.l. homeomorphism of

JdC to itself can be extended to a p.l. homeomorphism of C to itself.

ool
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1.3. THEOREM. If M is a p.l. n-manifold and C is a p.l. n-cell such
that MNC =gMNJC is a p.I. (n—1)-cell (as a p.l. submanifold of both M
and.of C), then M is p.l. homeomorphic to MUC. ' 7

The next two theorems are due to V. K. A. M. Gugenheim [30].

‘1.4 THEOREM. If M is a p.l. n-cell or a p.l. n-sphere, then any orienta-
tion preserving p.l. homeomorphism of M onto itself is p.l. isotopic to the

identity.

1.5 THEOREM. If M is a p.l. n-manifold, C1 and C2 are p.l. n-cells
(as p.l. submanifolds) in Int M and X is any closed subset of M such
that C,UC, lies in a component of M—X, then there is a p.l. isotopy
é:MxI-M such that ¢o=1, ¢|X=1 forall tel, and $,(C))=C,.

Regular Neighborhoods

The theory of regular neighborhoods was developed by J. H. C. Whitehead
[109]. We describe the essential features.

If K is a simplicial complex, o is a simplex of K and 7 is a face
of o, with dimr = dim ¢ — 1, which is not a proper face of any other
simplex of K, then the complex K — {o,7} is said to be obtained from K
by aﬁ elementary collapsing. If a subcomplex L of K is obtained from
K by a finite sequence of elementary collapsings, we say K collapses
to L and denote this K vL. Note that if KL, then |L| is a strong
deformation retract of |K|.

Suppose P is a compact polyhedron in a p.l. n-manifold M (i.e. P
is the image of a finite subcomplex of some allowablg triangulation of M).
By a regular neighborhood of P in M we mean a p.l. n-submanifold N
of M such that there is a triangulation (T,L) in the p.l. structure on M
and finite subcomplexes K,L of T with KL, h(|K|) = N, and
h(|L|) = P. Note that a regular neighborhood of P may or may not be a

neighborhood of P in the traditional sense (i.e. P need not be in the

topological interior of N).
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1.6. THEOREM. Let M be a p.1 manifold, (T,h) a triangulation in the
p.l. structure on M, and L a finite subcomplex of T. Let N(L,T)=

U st(e,T). Then h(|N(L,T)|) is a regular neighborhood of h(|L|)
oelL
provided

(i) Each simplex of T which has all its vertices in L is in L
(i.e. T is full in L), and
(ii) If 0 e N(L,T) and o N |L| = @, then 1lk(o, N(L,T)NL collapses

to a vertex.

1.7. COROLLARY. h(|N(L",T")|) is a regular neighborhood of h(|L|);

where T” denotes the second barycentric subdivision of T.

1.8. THEOREM. Let M be a p.l. manifold, P a compact polyhedron in
M and N, and N, ~magulair neighborhoods of P in M, then:

(i) There ig a p.1. homeomorphism h:N, - N2,

(ii) If PCIntNy(i=1,2), we can require that h|P = 1.

(iii) If N;NJM is a regular neighborhood of PNJM(i=1,2) (hence
N;NoM=¢ if PNJM= @), there is a p.l. isotopy f:MxI-> M such that
fo=1 and f,(N) =N,

(iv) If, in (iii), PNAM—N; = @ (i=1,2), then we can require that
ft|P= 1 forall tel

1.9. COROLLARY. If (T,h) is an allowable triangulation of a p.I.
n-manifold M and L is a subcomplex.of T which collapses to a vertex,

then any regular neighborhood of h(|Ll) in M is a p.l. n-cell.

1.10. COROLLARY. If M isa p.l. n-manifold, then any regular neighbor-
hood of oM in M is p.l. homeomorphic to oMxI.

General Position
A fundamental fact of p.l. topology is that two polyhedra in a p.l.
manifold may be moved slightly to be in ‘‘general position’’ in the sense

that their intersection is as simple as possible or, more generally, that a

L]
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map of a polyhedron into a manifold can be approximated by one with
simple singularities (self intersections). If a map f:|K| - R" embeds the
0O-skeleton of K onto a maximally independent set of points and is affine
on each simplex of K, thenitis a matter of elementary linear algebra to
analyze the singularities of f, and this situation serves as a model for
general position. However, if we subdivide K in order to make f simpli-
cial (as a mab into some triangulation of R™), it no longer satisfies the
above condition — simplexes must be introduced where intersections cccur.
Since subdivision is a necessit.y in piecing together local ‘‘general position’’
approximations to yield a global one for a map intc a manifold, one is faced
with the problem of providing an invariant definition of general position
which preserves as much as possible the properties of the above mentioned
model. Most of the treatments of general position known to me resolve this
problem by accepting a weak definition — usually involving only the dimen-
sion of the singular set and neglecting ‘‘transversality’’ of intersections
and/or the behavior of the map at a ‘‘brarch point.”” Our approach, ad-
mittédly cumbersome and inelegant, is to spell out the properties of general
position which we will subsequently use. We limit the generality to that
actually needed. For a simplicial complex K, amap f: |K| » R" is
'called affine if f maps each simplex of K linearly, in terms of barycentric
coordinates, into R", Foramap f:X » Y we define the singular set,
S(f), of f to be the closure of {x ¢ X: #(E~1(f(x))) > 1}. We decompose

S(f) as a disjoint union, S(f) = u 8;(®, by S;(f) = {xeS(f):#(f‘l(f(x)))=il.
i>1

Putting 2,(f) = £(S;(0), we call the points of X,(f) branch points,

Z,(f) double points, Z,(f) triple points, and soon. For x¢|K|, K a
simplicial complex, we define the local dimension of K at x, locdim(K,x),
to be the maximal dimension of the (closed) simplexes of K containing x.
A point x ¢ |K| is called a regular' point of K, if there is an open neigh-
borhood of x in |K| homeomorphic to either RY or to Rg,

q = locdim (K,x). Regular points of the second type will be called

boundary points of K.
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1.11. DEFINITION. For k< n< 3, and K a finite k-comblex, a map
f:|K| » R? is in general position with respect to K provided:
(i) f is an affine embedding on each simplex of K,
(i) dim S;())<n-3, K has local dimension (n—1) at each point
of S,(f), and f|(IK[=S;(f) is an immersion.
(iii) for i> 2, dim S;(f)< ik — (i—1)n (hence S (f) @ for i>n),
_furthermore for y ¢ 3;(f), and f=1(y) = %y, x5 1 2 locdim (K,x;) > (i-1)n.
(iv) for i>2 Si(f) contains a nonregular pomt only in the case
n=3, i=2. Inthis case S,(f) contains only finitely many nonregular
points and for each such point x the other point, x,, of f"l(f(x)) is a
regular, nonboundary point and K has local dimension 2 at x and at X
(v) for i>2 and ye Ei(f), f ‘l(y) contains at most one boundary
point; this occurs only when n=3 and K has local dimension 2 at
each point of £~1(y).
(vi) for i>2 and ye Xi(f) a point such that K is regular at each

point x. of f'l(y), f is transverse at y in the sense that there exist

maximaljly independent hyperplanes Hl""’Hi through 0 with dim H-=
locdlm(K,x ), a neighborhood N of y in R® and a p.l. embedding

. h:N.»RP wnth h(y) = 0, and with hf taking a neighborhood of x; in K
onto a neighborhood of 0 in Hj or H'; according as %; is not or is a
boundary point of K.

1. 12 LEMMA. Suppose K is a finite complex of dimension k< n< 3,
A, B C are subcomplexes of K with K = AUBUC, AUB a full subcom-
plex of K and ANC = @. Then given any affine map g:|K| » R" such
that g||B| is in general position with respect to B and given ¢ >0
there exists an affine map f:|K| - R" satisfying: -

(a) d(f(x),gx))<e forall xe K|,

®) f||AUB| = g| |AUB|;

(c) £]|BUC| is in general position with respect to BUC, and

(d) for each subcomplex L of K such that gl |L| is an embedding,
f]|L| is also an embgdding.



