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Chapter 1

Combinatorial
Analysis

1.1 INTRODUCTION

Here is a typical problem of interest involving probability. A communication system
is to consist of n seemingly identical antennas that are to be lined up in a linear order.
The resulting system will then be able to receive all incoming signals—and will be
called functional—as long as no two consecutive antennas are defective. If it turns out
that exactly m of the n antennas are defective, what is the probability that the resulting
system will be functional? For instance, in the special case where n = 4 and m = 2
there are 6 possible system configurations—namely,

—_—0 = OO
—_—0 0O — —

O = — -
N

where 1 means that the antenna is working and O that it is defective. As the resulting
system will be functional in the first 3 arrangements and not functional in the remaining
3, it seems reasonable to take 2 z = 2 as the desired probablhty In the case of general
n and m, we could compute the probability that the system is functional in a similar
fashion. That is, we could count the number of configurations that result in the system
being functional and then divide by the total number of all possible configurations.

From the preceding we see that it would be useful to have an effective method
for counting the number of ways that things can’ occur. In fact, many problems in
probability theory can be solved simply by counting the number of different ways that
a certain event can occur. The mathematical theory of counting is formally known as
combinatorial analysis.
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1.2 THE BASIC PRINCIPLE OF COUNTING

The following principle of counting will be basic to all our work. Loosely put, it states
that if one experiment can result in any of m possible outcomes and if another experi-
ment can result in any of n possible outcomes, then there are mn possible outcomes of
the two experiments.

~ The basic principle of counting .
‘Suppose that two experiments are to be performed. Then if experiment 1 can
- result in any one of m possible outcomes and if for each outcome of experiment
-1 there are n possible outcomes of experiment 2, then together there are mn
_ possible outcomes of the two experiments.

Proof of the Basic Principle: The basic principle may be proved by enumerating all
the possible outcomes of the two experiments as follows:

[ 430 ) 1 i) ey /)
2,1, 2,2, ..., 2,n)

(m,1), m,2), ..., (m,n)

where we say that the outcome is (i, j) if experiment 1 results in its ith possible
outcome and experiment 2 then results in the jth of its possible outcomes. Hence the
set of possible outcomes consists of m rows, each row containing n elements, which
proves the result.

EXAMPLE 2a

A small community consists of 10 women, each of whom has 3 children. If one woman
and one of her children are to be chosen as mother and child of the year, how many
different choices are possible?

Solution. By regarding the choice of the woman as the outcome of the first experiment
and the subsequent choice of one of her children as the outcome of the second exper-

iment, we see from the basic principle that there are 10 x 3 = 30 possible choices.
B

When there are more than two experiments to be performed, the basic principle
can be generalized as follows.

The generalized basic principle of counting

- If r experiments that are to be performed are such that the first one may res“k
in any of n; possible outcomes, and if for each of these n; possible outcomes
 there are ny possible outcomes of the second experiment, and if for each of the
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possxbie outcomes of the ﬁrst two expenments thcre are n3’ posmbie outcomés:' “
- of the third experiment, and if .. » then there is a total ofny -ny---n, possible
. outcomes of the r expenm,ents . L " .

EXAMPLE 2b

A college planning committee consists of 3 freshmen, 4 sophomores, 5 juniors, and 2
seniors. A subcommittee of 4, consisting of 1 person from each class, is to be chosen.
How many different subcommittees are possible?

Solution. We may regard the choice of a subcommittee as the combined outcome of
the four separate experiments of choosing a single representative from each of the
classes. Hence it follows from the generalized version of the basic principle that there
are 3 x 4 x 5 x 2 = 120 possible subcommittees. |

EXAMPLE 2c

How many different 7-place license plates are possible if the first 3 places are to be
occupied by letters and the final 4 by numbers?

Solution. By the generalized version of the basic principle the answer is 26 - 26 - 26 -
10-10-10- 10 = 175,760,000. [ |
EXAMPLE 2d

How many functions defined on » points are possible if each functional value is either
Oor1?

Solution. Let the points be 1,2,...,n. Since f(i) must be either O or 1 for each
i=1,2,...,n,it follows that there are 2" possible functions. |
EXAMPLE 2e

In Example 2c, how many license plates would be possible if repetition among letters
or numbers were prohibited?

Solution. In this case there would be 26 - 25-24-10-9 -8 -7 = 78,624,000 possible
license plates. &)

1.3 PERMUTATIONS

How many different ordered arrangements of the letters a, b, and ¢ are possible? By
direct enumeration we see that there are 6: namely, abc, ach, bac, bca, cab, and cha.
Each arrangement is known as a permutation. Thus there are 6 possible permutations
of a set of 3 objects. This result could also have been obtained from the basic principle,
since the first object in the permutation can be any of the 3, the second object in the
permutation can then be chosen from any of the remaining 2, and the third object in the
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permutation is then chosen from the remaining 1. Thus there are 3 -2 - 1 = 6 possible
permutations.

Suppose now that we have n objects. Reasoning similar to that we have just used
for the 3 letters shows that there are

nn—1)n—-2)---3.2-1=n!
different permutations of the n objects.

EXAMPLE 3a

How many different batting orders are possible for a baseball team consisting of 9
players?

Solution. There are 9! = 362,880 possible batting orders. =]

EXAMPLE 3b

A class in probability theory consists of 6 men and 4 women. An examination is
given, and the students are ranked according to their performance. Assume that no
two students obtain the same score.

(a) How many different rankings are possible?

(b) If the men are ranked just among themselves and the women among themselves,
how many different rankings are possible?

Solution. (a) As each ranking corresponds to a particular ordered arrangement of the
10 people, we see that the answer to this part is 10! = 3,628,800.

(b) As there are 6! possible rankings of the men among themselves and 4! possi-
ble rankings of the women among themselves, it follows from the basic principle that
there are (6!)(4!) = (720)(24) = 17,280 possible rankings in this case. |

EXAMPLE 3c

Ms. Jones has 10 books that she is going to put on her bookshelf. Of these, 4 are
mathematics books, 3 are chemistry books, 2 are history books, and 1 is a language
book. Jones wants to arrange her books so that all the books dealing with the same
subject are together on the shelf. How many different arrangements are possible?

Solution. There are 4! 3! 2! 1! arrangements such that the mathematics books are first
in line, then the chemistry books, then the history books, and then the language book.
Similarly, for each possible ordering of the subjects, there are 4! 3! 2! 1! possible
arrangements. Hence, as there are 4! possible orderings of the subjects, the desired
answer is 4! 4! 312! 1! = 6912. &

We shall now determine the number of permutations of a set of n objects when
certain of the objects are indistinguishable from each other. To set this straight in our
minds, consider the following example.
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EXAMPLE 3d

How many different letter arrangements can be formed using the letters PEP PER?

Solution. We first note that there are 6! permutations of the letters P; E1 P, P3E2R
when the 3P’s and the 2E’s are distinguished from each other. However, consider
any one of these permutations—for instance, P; P, E| P3E; R. If we now permute the
P’s among themselves and the E’s among themselves, then the resultant arrangement
would still be of the form PP E PER. That is, all 3! 2! permutations

P P,E\P3sE;R P PE,P3E(R
PiP3E{P,E;R P P3E;P,ER
P,PiE{P3E;R PP E>P3ER
P,PsE{Pi1EoR P,P3E>P ER
P3P EiP,E;R P3P E2PER
PsP,E\PiE;R P3P,E,PE|R

are of the form P PE P ER. Hence there are 6!/(3! 2!) = 60 possible letter arrange-
ments of the letters PEPPER. 4]

In general, the same reasoning as that used in Example 3d shows that there are

n!
ny!'ny! - ny!

different permutations of n objects, of which n; are alike, n; are alike, ..
alike.

., n, are

EXAMPLE 3e

A chess tournament has 10 competitors of which 4 are Russian, 3 are from the United
States, 2 from Great Britain, and 1 from Brazil. If the tournament result lists just the
nationalities of the players in the order in which they placed, how many outcomes are
possible?
Solution. There are

10!

———— = 12,600
413121 1!

possible outcomes. B

EXAMPLE 3f

How many different signals, each consisting of 9 flags hung in a line, can be made
from a set of 4 white flags, 3 red flags, and 2 blue flags if all flags of the same color
are identical?

Solution. There are o

4! 312!
different signals. ; H

= 1260
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1.4 COMBINATIONS

We are often interested in determining the number of different groups of r objects that
could be formed from a total of n objects. For instance, how many different groups
of 3 could be selected from the 5 items A, B, C, D, and E? To answer this, reason
as follows: Since there are 5 ways to select the initial item, 4 ways to then select the
next item, and 3 ways to select the final item, there are thus 5 - 4 - 3 ways of selecting
the group of 3 when the order in which the items are selected is relevant. However,
since every group of 3, say, the group consisting of items A, B, and C , will be counted
6 times (that is, all of the permutations ABC, ACB, BAC, BCA, CAB, and CBA will
be counted when the order of selection is relevant), it follows that the total number of
groups that can be formed is

5:-4-3

3.2-1

In general, as n(n — 1) ---(n —r + 1) represents the number of different ways
that a group of r items could be selected from #n items when the order of selection is
relevant, and as each group of r items will be counted r! times in this count, it follows
that the number of different groups of r items that could be formed from a set of 7
items is

=10

n(n—l)---(n—r+1)_ n!
r! T (n—r)r!
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Thus ’: represents the number of different groups of size r that could be se-

lected from a set of n objects when the order of selection is not considered relevant.

EXAMPLE 4a

A committee of 3 is to be formed from a group of 20 people. How many different
committees are possible?

TBy convention, 0! is defined to be 1. Thus (g) ) (Z) = 1. We also take (7) to be equal to 0
when eitheri < Qori > n.
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20-19-18
Solution. There are (20) =

Vit e 1140 possible committees. &

EXAMPLE 4b

From a group of 5 women and 7 men, how many different committees consisting of
2 women and 3 men can be formed? What if 2 of the men are feuding and refuse to
serve on the committee together?

Solution. As there are (g) possible groups of 2 women, and (;) possible groups of 3

5-4\7-6-
men, it follows from the basic principle that there are <g> (;) = ( ﬁ) 37, ? =

350 possible committees consisting of 2 women and 3 men.

Now suppose that 2 of the men refuse to serve together. Because a total of
(g) (?) = 5 out of the (;) = 35 possible groups of 3 men contain both of the
feuding men, it follows that there 35 — 5 = 30 that do not. Because there are still

5 5 okt
= 10 ways to choose the 2 women, it follows that in this case that there are

) =
30 - 10 = 300 possible committees. |
EXAMPLE 4c

Consider a set of n antennas of which m are defective and #n — m are functional and
assume that all of the defectives and all of the functionals are considered indistinguish-
able. How many linear orderings are there in which no two defectives are consecutive?

Solution. Imagine that the n — m functional antennas are lined up among themselves.
Now, if no two defectives are to be consecutive, then the spaces between the functional
antennas must each contain at most one defective antenna. That is, in the n — m + 1
possible positions—represented in Figure 1.1 by carets—between the n —m functional
antennas, we must select m of these in which to put the defective antennas. Hence there

n—m+1 : ; i . ; 2
are a5 * possible orderings in which there is at least one functional antenna
between any two defective ones. |
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1 = functional

~ = place for at most one defective

Figure 1.1.



