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PREFACE

The problems of development of constructive methods for the analysis of linear
and weakly nonlinear boundary-value problems for a broad class of functional
differential equations, including systems of ordinary differential and difference
equations, systems of differential equations with delay, systems with pulse ac-
tion, and integro-differential systems, traditionally occupy one of the central
places in the qualitative theory of differential equations [5, 51, 94, 104, 118,
148]. This is explained, first of all, by the practical significance of the the-
ory of boundary-value problems for various applications — theory of nonlinear
oscillations |2, 7, 14, 15, 70, 89, 97, 101, 139], theory of stability of motion
[50, 51, 97, 98, 108|, control theory [128, 158], and numerous problems in ra-
dioengineering, mechanics, biology, etc. [81, 89, 103, 121, 152.

As a specific feature of the analyzed boundary-value problems, we can men-
tion the fact that their linear part is, in most cases, an operator without inverse.
This fact makes it impossible to use traditional methods based on the fixed-
point principle for the investigation of boundary-value problems of this kind.
The uninvertibility of the linear part of the operator is a consequence of the fact
that the number m of boundary conditions does not coincide with the num-
ber n of unknown variables in the operator system. It is said that problems of
this kind for systems of functional differential equations are problems of Fred-
holm type (or with Fredholm linear parts). They include extremely complicated
and insufficiently studied (both underdetermined and overdetermined) critical
and noncritical boundary value-problems. The applicability of the well-known
Schmidt lemma [148] to the investigation of boundary-value problems regarded
as operator equations with bounded operators in the linear part with an aim to
construct a generalized inverse operator resolving the original boundary-value
problem is restricted by the requirement that the corresponding boundary-value
problem must be of Fredholm type with index zero, i.e., that m = n. There-
fore, a major part of the works dealing with problems of this sort were carried
out under the assumption that these problems are of Fredholm type with in-
dex zero (Azbelev, Maksimov, and Rakhmatullina [8], Vejvoda [149], Wexler
[153], Grebenikov, Lika, and Ryabov |65, 93], Malkin [101]|, Mitropol’skii and
Martynyuk [107], Samoilenko, Perestyuk, and Ronto [139, 140]). Moreover,
a significant part of these results was, in fact, obtained under the assumption
that the operator in the linear part of the original boundary-value problem has
the inverse operator (noncritical case). We do not use this assumption.
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It is known (Atkinson [6], Vainberg and Trenogin [148], Pyt’yev [123], Turbin
[147], and Nashed [112]) that the classical Schmidt procedure [141] is applicable
to the construction of generalized inverse operators only in the case of Fred-
holm operators of index zero. Thus, for boundary-value problems regarded as
operator systems in abstract spaces [153], we suggest some methods for the con-
struction of the generalized inverse (or pseudo-inverse) operators for the orig-
inal linear Fredholm operators in Banach (or Hilbert) spaces. As a result of
systematic application and development of the theory of generalized inverse
operators [112, 123| and matrices [91, 109, 117, 147], new criteria of solvability
were obtained and the structure of solutions was determined for linear Fredholm
boundary-value problems for various classes of systems of functional differential
operators. The methods used for the construction of the generalized Green’s
operators (and generalized matrices playing the role of kernels of their integral
representations) for semihomogeneous boundary-value problems for systems of
this sort are presented from the common viewpoint. We also study basic prop-
erties of the generalized Green’s operator. In particular, it is shown how, using
this operator, one can construct the generalized inverse of the operator of the
original boundary-value problem.

New efficient methods of perturbation theory were developed in analyzing
weakly nonlinear boundary-value problems. These methods, including the
Lyapunov- Poincaré method of small parameter [97, 120]|, asymptotic meth-
ods of nonlinear mechanics developed by Krylov, Bogolyubov, Mitropol’skii,
and Samoilenko [14, 15, 90|, some methods proposed by Tikhonov [144, 145]
and the Vishik-Lyusternik method [150|, are extensively used for the solu-
tion of various problems encountered in different fields of science and engineer-
ing, such as radioengineering [101, 121|, shipbuilding [89], celestial mechan-
ics 65, 81], biology [103, 152], ete. These methods were developed and used
in numerous works (Vainberg and Trenogin [148], Vejvoda [149], Grebenikov
and Ryabov [65], Kato [80], Malkin [101], Mishchenko and Rozov [106], and
Hayashi [74]). However, the application of the methods of perturbation theory
to the analysis of weakly nonlinear boundary-value problems for various classes
of differential systems was, for the most part, restricted to the case of ordi-
nary periodic boundary-value problems in the theory of nonlinear oscillations
(Grebenikov and Ryabov [65], Hale [70], Malkin [101], Proskuryakov [122], and
Yakubovich and Starzhinskii [154] for systems of ordinary differential equations,
Mitropol’skii and Martynyuk [107] and Shimanov [143] for systems with delay,
and Samoilenko and Perestyuk [139] and Bainov and Simeonov [10] for systems
with pulse action).

We show that the principal results in the theory of weakly nonlinear
periodic oscillations remain valid (with necessary refinements, changes, and
supplements) for general weakly perturbed (with Fredholm-type linear parts)
boundary-value problems for systems of functional differential equations.
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The boundary-value problems are specified by linear or weakly nonlinear vector
functionals such that the number of their components does not coincide with
the dimension of the operator system. In our monograph, we develop a general
theory of boundary-value problems of this kind, give a natural classification of
critical and noncritical cases,! establish efficient conditions for the coefficients
guaranteeing the existence of solutions, and develop iterative algorithms for the
construction of solutions of these problems. Numerous results presented in the
monograph were originally obtained and approved in analyzing boundary-value
problems for systems of ordinary differential equations (Boichuk [19]). Later,
it was discovered that the proposed procedures of investigation and algorithms
are applicable to the analysis of much more general objects, including boundary-
value problems for ordinary systems with lumped delay [32, 37, 157], systems
with pulse action [29, 30, 135], autonomous differential systems [25, 26, 36],
and operator equations in functional spaces whose linear part is a normally
resolvable operator but they are not everywhere solvable [33-35].

In the first chapters, to make our presentation more general, we give some
results from the theory of generalized inversion of bounded linear operators in
abstract spaces, which are then used for the investigation of boundary-value
problems for systems of functional differential equations. Some of these results
are of independent interest for the theory of linear operators, although our main
aim was just to develop the tools required for the analysis of boundary-value
problems for systems of functional differential equations. The methods used for
the construction of generalized inverse operators in Banach and Hilbert spaces
are presented separately because these spaces are characterized by absolutely
different geometries. The construction of the generalized inverse operator for
a linear Fredholm operator acting in Banach spaces is based on the Atkinson
theorem [6] obtained as a generalization of the Nikol'skii theorem [113], which
states that any bounded Fredholm operator can be represented in the form of
a unilaterally invertible and completely continuous (finite-dimensional) opera-
tor. By using this fact, we arrive at the construction of the generalized inverse
of a Fredholm operator similar to the well-known Schmidt procedure [148] ap-
plicable only in the case of generalized inversion of Fredholm operators of index
zero in Banach spaces.

The theory of generalized inversion and pseudoinversion of linear Fredholm
operators in Banach and Hilbert spaces enabled us to develop a unified proce-
dure for the investigation of Fredholm boundary-value problems for operator
equations solvable either everywhere or not everywhere (Chapter 4).

The proposed approach is then improved for the analysis of boundary-value
problems for standard operator systems, including systems of ordinary dif-
ferential equations and equations with delay (Chapter 5) and systems with

! In the literature, these cases are sometimes called resonance and nonresonance.
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pulse action (Chapter 6). We obtain necessary and sufficient conditions for the
existence of solutions of linear and nonlinear differential and difference systems
bounded on the entire axis (Chapter 7).

This enables us to take into account specific features of each analyzed differ-
ential system and present necessary examples. The readers interested primarily
in the theory of boundary-value problems for specific differential systems may
focus their attention on the corresponding chapters and omit the chapters con-
taining preliminary information.

The authors do not even try to present the complete bibliography on the
subject, which is quite extensive, and mention only the works required for the
completeness of presentation.

In conclusion, the authors wish to express their deep gratitude to all par-
ticipants of numerous seminars and conferences on the theory of differential
equations and nonlinear oscillations, where all principal results included in the
book were reported and discussed.

The authors,
Kiev, May 2004



Preface to the second edition

For more than 11 years that have passed since the appearance of the first
edition, numerous new publications of the authors have appeared. Thus, it be-
comes necessary to supplement the book with the new accumulated material
and introduce necessary corrections to the previous edition, which remains to
be of considerable interest for the researchers working in this field, quite actual,
and well-cited.

We give more correct definitions of differences in the classification of reso-
nance and nonresonance boundary-value problems in the investigation of gen-
eral Fredholm problems (of nonzero index) and special (periodic) cases of these
problems. The classical definition of the equation for generating amplitudes
that gives necessary condition for the branching of solutions of nonlinear pe-
riodic problems is generalized to the case of general Fredholm boundary-value
problems. Thus, the well-known results obtained in the works by A. M. Lya-
punov, I. G. Malkin, Yu. A. Ryabov, V. A. Yakubovich, and V. M. Starzhinskii
are generalized.

We add new sections dealing the theory of differential-algebraic systems with
singular matrix of derivatives, impulsive, and boundary-value problems for
these systems of equations extensively studied for the last ten years. The re-
sults presented in these sections illustrate the possibility of application of the
methods of investigations proposed in our monograph to a broad class of oper-
ator equations and represent the latest actual achievements of the authors in
this direction. We also add new results obtained for delay differential systems.
In our opinion, they illustrate the previous sections of the monograph devoted
to the boundary-value problems for these systems and show the efficiency of
the proposed algorithm in the investigation of delay systems.

New references are added, some necessary corrections are made, and mis-
prints found in the first edition are corrected. We hope that the second sup-
plemented and revised edition of the monograph will be more interesting for
the readers.

The authors,
Kiev, May 2016



NOTATION

B
Cla,b]

C'a, b

D2{a, b]

dimim L
dimker L
(G)(t)

G(t,7)

H

imL (R(L))
ker L (N(L))
K(t, 1)
l

X()

L= ¥

L)
L—J

—1
L[(T)
Lyla,b]

Banach space of vector functions z: [a,b] — R"

space of vector functions z: [a,b] - R™ continuous on
an interval [a, b]

space of vector functions z: [a,b] = R™ continuously
differentiable on an interval [a, b]

Banach space of vector functions z: [a,b] — R™ abso-
lutely continuous on an interval [a,b] with a norm
l2llpn = 112lley + [|2(a) || rn

dimension of the image of an operator L

dimension of the kernel of an operator L

generalized Green operator for a semihomogeneous
boundary-value problem

generalized Green matrix

Hilbert space of vector functions z: [a,b] — R"
image of a linear operator L

kernel (null space) of a linear operator L
Cauchy matrix

linear vector functional

m X n constant matrix that is the result of the action
of an m-dimensional linear vector functional [ on the
columns of an n x n matrix X (t)

operator generalized inverse or pseudoinverse to an op-
erator L

left (right) pseudoinverse of an operator L
inverse of an operator L
left (right) inverse of an operator L

Banach space of vector functions z: [a,b] — R" inte-
grable to the pth power (1 < p < o0) equipped with

b, 1/
a norm ||z|[zp = (/Z|2i(t)|pdt)
¢ i



xvi Notation
L(By1, Bs) space of bounded linear operators L acting from a Ba-
nach space B; into a Banach space Bs
Pr linear operator (projector) projecting a Banach space B
onto the null space of an operator L
Py, linear operator (projector) projecting a Banach space B
onto a subspace Y C B isomorphic to the null space
N(L*) of the operator adjoint to an operator L
P, = Py(1)  linear operator (orthoprojector) projecting a Hilbert
space H onto the null space of an operator L
R™  Euclidean vector space of constant vectors
signt  sign function
di;  Kronecker symbol
X[ap)(t)  characteristic function of an interval [a, b]
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Chapter 1
PRELIMINARY INFORMATION

In Chapter 1, we present some well-known definitions and results from fune-
tional analysis, the theory of linear operators in Hilbert and Banach spaces,
and matrix theory, required for our subsequent presentation. The readers who
are not familiar with the theory of linear operators in function spaces can find
here an elementary presentation of the facts essentially used in what follows.
The other readers can use this material for references. The theorems are pre-
sented without proofs, but the reader is referred to the sources for further
details. In this chapter, we also introduce necessary notation.

1.1 Metric and Normed Spaces

Definition 1.1. A metric space is defined as a set X equipped with a met-
ric p(-,-), i.e., a real function defined in the set X and such that

(1) plz,y) 20 (p(z,y) =0 iff z=y):
(2) plz,y) = ply, z);
(3) plz,2) < p(x,y) + p(y, z) (triangle inequality).

Thus, an arbitrary set equipped with a metric is a metric space.

Example 1. A set X whose points are collections of n-dimensional real vectors
x = (zy,...,x,) turns into a metric space if we set

n 1/2
plz,y) = [Z(-’Ei = yi)2:| :
i=1

The same set X can be also equipped with other metrics, e.g.,

p(z,y) = gg’g‘n |zs — il
n
pa(z,y) = ) |zi —yil.
=1

As a result, it turns into different metric spaces.
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Example 2. Let Y be the set of continuous functions defined on a seg-
ment [a,b]. If we introduce a metric by setting

= (1) — 1 : Y.
p(z,y) Ty lz(t) —y(t)| for =z,y€

In this case, Y turns into the well-known metric space Cla,b]. The set of
continuous functions can be transformed into other metric spaces by introducing
different functions, e.g., as follows:

& 1/p
pl(m,y)=[/lm(t)—y(mpdt] , P>l

The set Z of n (n > 1) times continuously differentiable functions defined
on the segment [a, b] turns into a metric space C™[a, b] if we use the following
metric:

play) = max max [o0)(t) — y@ (1)),

0<i<n a<t<d

2O =2(t), yOU) =y(), Vr,yeZ

Example 3. Consider a set whose points are ordered systems of real numbers
T= (213 2255 <o 58ny=+<) B0d Y = (¥ Y25 <+ 53 Pny < =-) Such that

o0 o0
Z |z;|P < oo and Z lyi [P < oo, p=> 1.
i=1 =1

If the distance is introduced according to the formula

00 1/p
p(z,y) = [Z i — ;ui|p] :
i=1

then we get a metric space denoted by [,, p > 1.

Definition 1.2. A sequence {z,};2, of elements of a metric space X is called
convergent to an element z € X if p(z,z,) = 0 as n — oo. The element z is

called the limit point of the set X.

Definition 1.3. A set M C X is called closed if it contains all its limit points.
The empty set is always regarded as closed.

Definition 1.4. Let M C X and let M’ be a set of limit points of M. The set
M = M U M’ is called the closure of the set M.

Definition 1.5. A sequence {z,}°; of elements of a metric space X is called
a fundamental (Cauchy) sequence if, for any real ¢ > 0, there exists N such
that p(z,,zm,) < & whenever n,m > N.



