Textbooks for University

Fundamentals of Advanced Mathematics (II)

Zhien Ma Miansen Wang Fred Brauer

Fundamentals of Advanced Mathematics (I)
Fundamentals of Advanced Mathematics (II)

高等学校教材

高等数学基础(Ⅱ)

马知恩 王绵森 西安交通大学数学系

Fred Brauer

Department of Mathematics

The University of British Columbia

高等教育出版社 Higher Education Press

图书在版编目(CIP)数据

高等数学基础(Ⅱ). 2=Fundamentals of Advanced Mathematics(Ⅱ)/马知恩,王绵森,(加)布劳尔(Brauer, F.)编.—北京:高等教育出版社,2006.1 ISBN 7-04-017794-3

I.高... II.①马... ②王... ③布... III.高等数 学一高等学校─教材─英文 IV.O13

中国版本图书馆 CIP 数据核字(2005)第 149498 号

策划编辑 徐 刚 责任编辑 董达英 封面设计 刘晓翔 责任绘图 朱 静 版式设计 范晓红 责任校对 王效珍 责任印制 陈伟光

出版发行 高等教育出版社 购书热线 010-58581118 計 址 北京市西城区德外大街 4号 免费咨询 800-810-0598 邮政编码 100011 址 http://www.hep.edu.cn 网 机 010-58581000 http://www.hep.com.cn 网上订购 http://www.landraco.com 销 蓝色畅想图书发行有限公司 http://www.landraco.com.cn 经 ED 刷 北京外文印刷厂 畅想教育 http://www.widedu.com 开 本 787×960 1/16 版 次 2006年1月第1版 印 张 29.25 次 2006年1月第1次印刷 印 字 数 520 000 定 价 36.20 元

本书如有缺页、倒页、脱页等质量问题,请到所购图书销售部门联系调换。 版权所有 侵权必究

物料号 17794-00

郑重声明

高等教育出版社依法对本书享有专有出版权。任何未经许可的复制、销售行为均违反《中华人民共和国著作权法》,其行为人将承担相应的民事责任和行政责任,构成犯罪的,将被依法追究刑事责任。为了维护市场秩序,保护读者的合法权益,避免读者误用盗版书造成不良后果,我社将配合行政执法部门和司法机关对违法犯罪的单位和个人给予严厉打击。社会各界人士如发现上述侵权行为,希望及时举报,本社将奖励举报有功人员。

反盗版举报电话: (010) 58581897/58581896/58581879

传 真: (010) 82086060

E - mail: dd@hep.com.cn

通信地址:北京市西城区德外大街 4号

高等教育出版社打击盗版办公室

邮 编:100011

购书请拨打电话: (010)58581118

About the book

This is the second volume of the textbook "Fundamentals of Advanced Mathematics" written by the same authors. It includes vector algebra and analytic geometry in space, multivariable calculus, and linear ordinary differential equations. The intentions and features are as introduced in the preface to the first volume. We repeat here the important advice to students in the first volume, as it is equally important for this second volume.

In order to learn calculus, it is not enough to read the textbook as if it were a newspaper. Learning requires careful reading, working through examples step by step, and solving problems. Solving problems requires more than imitation of examples. It is necessary to think about what the problem really asks and to develop a method for that particular problem.

If something is still not clear after you have tried to understand it, you should ask a classmate, a more advanced student, or your teacher. If a classmate asks you a question, you may learn a great deal from explaining the answer.

The following two additional remarks might be helpful to readers in using the second volume.

- (1) The material on linear systems of ordinary differential equations (Section 9.2) is not included in the fundamental requirements. Before studying it, readers will need some basic knowledge of linear algebra.
- (2) Some of the material in this volume has been stated in terms of matrices and determinants. For readers who are not yet familiar with the basic concepts and operations for matrices and determinants we have included a brief outline in Appendix A.

Contents

Chapter 5 Vector Algebra and Analytic Geometry in Space	1
5.1 Vectors and Their Linear Operations	1
5.1.1 The concept of vector	1
5.1.2 Linear operations on vectors	3
5.1.3 Projection of vectors	5
5.1.4 Rectangular coordinate systems in space and components of	of vectors 8
Exercises 5.1	16
5.2 Multiplicative Operations on Vectors	17
5.2.1 The scalar product(dot product,inner product) of two vector	rs 17
5.2.2 The vector product (cross product, outer product) of two vec	ctors 20
5.2.3 The mixed product of three vectors	24
Exercises 5.2	25
5.3 Planes and Lines in Space	26
5.3.1 Equations of planes	27
5.3.2 Position relationships between two planes	30
5.3.3 Equations of straight lines in space	32
5.3.4 Position relationships between two lines	35
5.3.5 Position relationships between a line and a plane	37
5.3.6 Distance from a point to a plane (line)	38
Exercises 5.3	39
5.4 Surfaces and Space Curves	41
5.4.1 Equations of surfaces	42
5.4.2 Quadric surfaces	47
5.4.3 Equations of space curves	53

П	Conte	ents
Exerci	ises 5.4	56
Chapt	er 6 The Multivariable Differential Calculus and its Applications	59
6.1 L	limits and Continuity of Multivariable Functions	59
6.1.1	Primary knowledge of point sets in the space \mathbb{R}^n	60
6.1.2	The concept of a multivariable function	63
6.1.3	Limit and continuity of multivariable functions	69
Exerci	ises 6.1	73
6.2 F	Partial Derivatives and Total Differentials of Multivariable Functions	75
6.2.1	Partial derivatives	75
6.2.2	Total differentials	81
6.2.3	Higher-order partial derivatives	89
6.2.4	Directional derivatives and the gradient	92
Exerc	ises 6.2	103
6.3 I	Differentiation of Multivariable Composite Functions and Implicit	
I	Functions	106
6.3.1	Partial derivatives and total differentials of multivariable	
	composite functions	106
6.3.2	Differentiation of implicit functions defined by one equation	114
6.3.3	Differentiation of implicit functions determined by more than one	
	equation	110
Exerc	ises 6.3	120
6.4 I	Extreme Value Problems for Multivariable Functions	122
6.4.1	Unrestricted extreme values	122
6.4.2	Global maxima and minima	12:
6.4.3	Extreme values with constraints; The method of Lagrange	
	multipliers	133
Exerc	ises 6.4	13
* 6.5	Taylor's Formula for Functions of Two Variables	14
	1 Taylor's formula for functions of two variables	14

Co	nte	nts
----	-----	-----

ı,		_	_	
١	E	Ŧ		

6.5.2	Proof of the sufficient condition for extreme values of function	
	of two variables	144
Exer	cises 6.5	146
6.6	Derivatives and Differentials of Vector-valued Functions	146
6.6.1	Derivatives and differentials of vector-valued functions of one	
	variable	146
6.6.2	Derivatives and differentials of vector-valued functions of two	
	variables	152
6.6.3	Rules for differential operations	156
Exer	cises 6.6	159
6.7	Applications of Differential Calculus of Multivariable Functions	
	in Geometry	160
6.7.1	Tangent line and normal plane to a space curve	160
6.7.2	Arc length	166
6.7.3	Tangent planes and normal lines of surfaces	171
6.7.4	Curvature	180
6.7.5	The Frenet frame	189
6.7.6	Torsion	194
Exer	cises 6.7	196
Synt	hetic exercises	201
Chaj	pter 7 The Integral Calculus of Multivariable Scalar Functions	
	and Its Applications	202
7.1	The Concept and Properties of the Integral of a Multivariable	
	Scalar Function	202
7.1.1	Computation of mass of an object	202
7.1.2	The concept of the integral of a multivariable scalar function	204
7.1.3	Properties of integrals of multivariable scalar functions	208
Exe	cises 7.1	208
7.2	Computation of Double Integrals	209
7.2.	Geometric meaning of the double integral	210

V	Content

	7.2.2	Computation methods for double integrals in rectangular	
		coordinates	211
	7.2.3	Computation of double integrals in polar coordinates	218
*	7.2.4	Integration by substitution for double integrals in general	225
	Exerc	ises 7.2	231
	7.3	Computation of Triple Integrals	235
	7.3.1	Reduction of a triple integral to an iterated integral consisting	
		of a single integral and a double integral	235
	7.3.2	Computation of triple integrals in cylindrical and spherical	
		coordinates	239
*	7.3.3	Computation of triple integrals by general substitutions	246
	Exerc	ises 7.3	248
	7.4	Applications of Multiple Integrals	252
	7.4.1	The method of elements for multiple integrals	252
	7.4.2	Examples of applications	257
	Exerc	ises 7.4	261
	7.5	Line and Surface Integrals of the First Type	263
	7.5.1	Line integrals of the first type	263
	7.5.2	Surface integrals of the first type	267
	Exerc	ises 7.5	274
	Synth	etic exercises	278
	Chap	ter 8 The Integral Calculus of Multivariable Vectorvalued	
		Functions and its Applications in the Theory of Fields	279
	8.1	Line and Surface Integrals of the Second Type	279
	8.1.1	The concept of field	280
	8.1.2	Line integrals of the second type	283
	8.1.3	Surface integrals of the second type	290
	Exerc	cises 8.1	30

8.2 The Relations Between Different Kinds of Integrals and their

Contents	V

	Applications to Fields	305
8.2.1	Green's formula	306
8.2.2	The conditions for a planar line integral to have independence	
	of path	311
8.2.3	Stokes' formula and the curl of a vector	322
8.2.4	Gauss' formula and divergence	331
8.2.5	Some important particular vector fields	341
Exerc	ises 8.2	346
Chap	ter 9 Linear Ordinary Differential Equations	352
9.1	Linear Differential Equations of Higher Order	352
9.1.1	Some examples of linear differential equation of higher order	352
9.1.2	Structure of solutions of linear differential equations	356
9.1.3	Solution of higher-order homogeneous linear differential	
	equations with constant coefficients	363
9.1.4	Solution of higher-order nonhomogeneous linear differential	
	equations with constant coefficients	369
9.1.5	Solution of higher-order linear differential equations with	
	variable coefficients	379
Exerc	cises 9.1	380
• 9.2	Linear Systems of Differential Equations	383
9.2.1	Basic concepts of linear systems of differential equations	383
9.2.2	The structure of solutions of a linear system of equations	384
9.2.3	Solution of a homogeneous system of linear equations with	
	constant coefficients	394
9.2.4	Solution of nonhomogeneous systems of linear equations with	
	constant coefficients	405
9.2.5	Some applications of systems of linear equations	407
• Exer	cises 9.2	413
Synt	hetic exercise	416
Арр	endix A Basic Properties of Matrices and Determinants	417
A.1	Matrices	417

VI Coi	
A.1.1 Elementary concepts of matrices	417
A.1.2 Operations on matrices	418
A.1.2.1 Linear operations on matrices	418
A.1.2.2 Multiplication of matrices	419
A.1.2.3 Powers of a square matrix	420
A.1.2.4 Transpositions of matrices	420
A.1.3 Representation of the product of two matrices by rows(column	s) 421
Exercises A.1	422
A.2 Determinants and Cramer's Rule	423
A.2.1 Definition and properties of determinants	423
A.2.2 Cramer's rule	426
Exercises A.2	428

Chapter 5 Vector Algebra and Analytic Geometry in Space

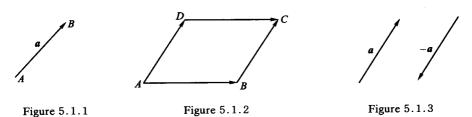
This chapter introduces the fundamental concepts of vector algebra and analytic geometry in space. These concepts are very important not only for studying the calculus of functions of several variables in the next chapter, but also for use in applications in physics, mechanics, other sciences, and engineering.

5.1 Vectors and Their Linear Operations

5.1.1 The concept of vector

Some of the quantities in nature are determined completely by their magnitudes. For example, to record length, area, mass, temperature, etc., we can represent them by means of real numbers if an appropriate unit of measure is given. These quantities are called scalar quantities. But there are also some quantities in nature, such as displacement, velocity, and force, for which we need more information to describe them. To describe a displacement of a body we have to know how far it moves and in what direction. To describe the velocity of a body, we have to know where the body is headed as well as how fast it is going. To describe a force, we need to record the direction in which it acts as well as how large it is. These quantities that have both direction and magnitude, are called vectors. A vector is usually represented by a line segment with an arrow, a directed line segment. The length of the directed line segment represents the magnitude of the vector and the arrow points in the direction of the vector. The vector defined by the directed line segment from the initial point A to the terminal point B is written as \overrightarrow{AB} . In print, for

convenience, vectors are also represented by small boldface letters such as a, a, and x (Fig. 5. 1. 1). The magnitude of a vector is called the length (or norm) of the vector. The length of the vectors \overrightarrow{AB} and a are written as $\|\overrightarrow{AB}\|$ and $\|a\|$, respectively.



A vector whose length is 1 is called a unit vector; a unit vector whose direction is the same as that of a is written as a° . A vector whose length is 0 is called the zero vector and is written as 0. The initial point of the zero vector coincides with its terminal point so that it represents a point, and it is also the only vector with no specific direction. It is seen from the definition of vector that a vector is determined completely by its length and direction and is independent of the location of its initial point and terminal point. Therefore, two vectors a and b are said to be equal if they have the same length and direction, denoted by a = b. For example, for the parallelogram ABCD in Fig. 5.1. 2, we have $\overrightarrow{AB} = \overrightarrow{DC}$, $\overrightarrow{AD} = \overrightarrow{BC}$.

A vector is called the negative vector of a vector a, if it has the same length as a but its direction is opposite to that of a, denoted by -a (Fig. 5.1. 3). Obviously, we have $\overrightarrow{AB} = -\overrightarrow{BA}$.

Let a and b be two nonzero vectors. Then a and b are said to be parallel or collinear, denoted by a//b, if their directions are the same or opposite, because in this case, a and b can be moved to the same line by means of parallel translation. The vectors a and b are said to be orthogonal or perpendicular, denoted by $a \perp b$ if the directions of a and b are orthogonal.

Suppose that $a_1, a_2, \dots, a_k (k \ge 3)$ are k vectors with a common initial point. If they lie in the same plane, then we say that these vectors are coplanar. It is easy to see that any two vectors are coplanar.

5.1.2 Linear operations on vectors

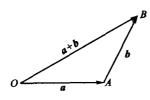
Addition of vectors

In physics, we often need to find the composition of displacements or forces. For instance, consider a particle moving from the point O to the point A, and then moving from the point A to the point B (Fig. 5.1.4). The displacement of the particle is equivalent to the one moving from the point O to the point O. Hence, if we take a vector \overrightarrow{OA} from the initial point O to the terminal point O, and then take a vector \overrightarrow{AB} from the initial point O to the terminal point O, then the total displacement \overrightarrow{OB} is equal to the composition of the two displacements; that is, $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$.

In general, we have the following definition.

Definition 5.1.1 (Triangle law of addition of vectors) Suppose that a and b are any two vectors and O is any point. If we draw a vector $\overrightarrow{OA} = a$ from O to A and then draw the vector $\overrightarrow{AB} = b$ starting from the terminal point A of a, then the vector \overrightarrow{OB} is called the sum of a and b, denoted by a + b, that is,

$$a + b = \overrightarrow{OB}$$
 or $\overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OB}$ (Fig. 5.1.4).



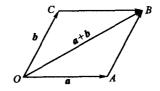


Figure 5.1.5

If the vectors a and b are not parallel, then we can also find their sum according to the following parallelogram law. We take an arbitrary point O, draw $\overrightarrow{OA} = a$, $\overrightarrow{OC} = b$, and take OA and OC as the adjoining sides of a parallelogram OABC (Fig. 5.1.5). Then $a + b = \overrightarrow{OB}$.

The addition of vectors satisfies the following laws:

- (1) Commutative law a + b = b + a;
- (2) Associative law (a+b)+c=a+(b+c);

- (3) a + 0 = a;
- (4) a + (-a) = 0.

Here, (3) and (4) are obvious, and (1) and (2) are illustrated geometrically in Fig. 5.1.6 and Fig. 5.1.7 respectively.

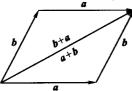


Figure 5.1.6

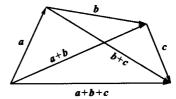


Figure 5.1.7

Multiplication by a scalar

Definition 5.1.2 Let λ be a nonzero scalar and a a nonzero vector. Then the product (or scalar multiple) of λ and a is a vector, denoted by λa . Its length is $\| \lambda a \| = |\lambda| \| a \|$, its direction is the same as that of a if $\lambda > 0$ or is opposite to that of a if $\lambda < 0$ (Fig. 5.1.8). If $\lambda = 0$ or a = 0, we define $\lambda a = 0$.

From definition 5.1.2 we have (-1)a = -a, and $a = ||a|| a^{\circ}$, where a° is the unit vector with the direction of a, so that we have

$$a^{\circ} = \frac{a}{\parallel a \parallel} \tag{5.1.1}$$

provided $a \neq 0$. Moreover, we define the difference of two vectors a and b by a - b = a + (-b).

According to the triangle law of addition of vectors, if the initial points of a and b are the same, then the vector from the terminal point of b to the terminal point of a is just the difference a - b (Fig. 5.1.9).

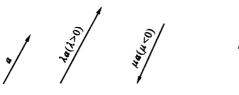


Figure 5.1.8

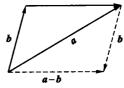


Figure 5.1.9

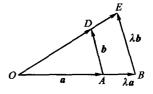
Products of scalars and vectors satisfy the following laws:

(1) Associative law $\lambda(\mu a) = (\lambda \mu) a$;

(2) Distributive law
$$\lambda (a + b) = \lambda a + \lambda b$$
,
 $(\lambda + \mu) a = \lambda a + \mu a$;

(3)
$$1a = a$$
.

We prove only the distributive law $\lambda(a + b) = \lambda a + \lambda b$, leaving the others to the reader. If $\lambda = 0$, the equality holds obviously. Let $\lambda > 0$ and draw $\overrightarrow{OA} = a$, $\overrightarrow{OB} = \lambda a$, $\overrightarrow{AD} = b$, $\overrightarrow{BE} = \lambda b$ (Fig. 5.1.10). Then the three points O, A, B are collinear, and \overrightarrow{AD} //



$$\overrightarrow{BE}$$
. Therefore, $\frac{\parallel \overrightarrow{OE} \parallel}{\parallel \overrightarrow{OD} \parallel} = \frac{\parallel \overrightarrow{OB} \parallel}{\parallel \overrightarrow{OA} \parallel} = \lambda$ and the points O, D, E are also collin-

ear, $\overrightarrow{OE} = \lambda \overrightarrow{OD}$. According to the triangle law, we have $\overrightarrow{OE} = \lambda a + \lambda b$, $\overrightarrow{OD} = a + b$, and hence $\lambda (a + b) = \lambda a + \lambda b$. If $\lambda < 0$, the proof is similar.

Addition and multiplication by a scalar are called by a joint name linear operator on vectors.

From the above discussion we know that the length of a vector has the following basic properties:

- (1) Nonnegativity $||a|| \ge 0$, and $||a|| = 0 \Leftrightarrow a = 0$;
- (2) Absolute homogeneity $\| \lambda a \| = |\lambda| \| a \|$;
- (3) Triangle inequality $||a+b|| \le ||a|| + ||b||$, where the sign of equality holds $\Leftrightarrow a$ and b have the same direction.

The geometric meaning of the triangle inequality is that the sum of the lengths of two adjoining sides of a triangle is greater than or equal to the length of the third side of the triangle.

5.1.3 Projection of vectors

To prepare for applications in the next section, we introduce the concept of projection of a vector onto another vector. Let us begin with the included angle between two vectors. Suppose that a and b are any two nonzero vectors. Taking any point M in the space, we draw vectors $\overrightarrow{MA} = a$, $\overrightarrow{MB} = b$ (Fig. 5. 1. 11). Then the angle $\angle AMB$ (not greater than π) is called the included angle between the vectors a and b, denoted by (a, b). If the included angle be-