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About the book

This is the second volume of the textbook “Fundamentals of Advanced Math-
ematics” written by the same authors. It includes vector algebra and analytic
geometry in space, multivariable calculus, and linear ordinary differential e-
quations. The intentions and features are as introduced in the preface to the
first volume. We repeat here the important advice to students in the first vol-
ume, as it is equally important for this second volume.

In order to learn calculus, it is not enough to read the textbook as if it
were a newspaper. Learning requires careful reading, working through exam-
ples step by step, and solving problems. Solving problems requires more than
imitation of examples. It is necessary to think about what the problem really
asks and to develop a method for that particular problem.

If something is still not clear after you have tried to understand it, you
should ask a classmate, a more advanced student, or your teacher. If a
classmate asks you a question, you may learn a great deal from explaining the
answer.

The following two additional remarks might be helpful to readers in u-
sing the second volume.

(1) The material on linear systems of ordinary differential equations
(Section 9.2) is not included in the fundamental requirements. Before study-
ing it, readers will need some basic knowledge of linear algebra.

(2) Some of the material in this volume has been stated in terms of ma-
trices and determinants. For readers who are not yet familiar with the basic
concepts and operations for matrices and determinants we have included a
brief outline in Appendix A.
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Chapter 5
Vector Algebra and Analytic Geometry in Space

This chapter introduces the fundamental concepts of vector algebra and ana-
lytic geometry in space. These concepts are very important not only for study-
ing the calculus of functions of several variables in the next chapter, but also

for use in applications in physics, mechanics,other sciences,and engineering.

5.1 Vectors and Their Linear Operations

5.1.1 The concept of vector

Some of the quantities in nature are determined completely by their magni-
tudes. For example,to record length,area, mass, temperature,etc. , we can re-
present them by means of real numbers if an appropriate unit of measure is
given. These quantities are called scalar quantities. But there are also some
quantities in nature,such as displacement, velocity, and force, for which we
need more information to describe them. To describe a displacement of a
body we have to know how far it moves and in what direction. To describe
the velocity of a body,we have to know where the body is headed as well as
how fast it is going. To describe a force, we need to record the direction in
which it acts as well as how large it is. These quantities that have both direc-
tion and magnitude, are called vectors. A vector is usually represented by a
line segment with an arrow,a directed line segment. The length of the directed
line segment represents the magnitude of the vector and the arrow points in
the direction of the vector. The vector defined by the directed line segment

from the initial point A to the terminal point B is written as XE.In print, for
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convenience, vectors are also represented by small boldface letters such as a,

a,and x (Fig.5.1.1). The magnitude of a vector is called the length (or

norm) of the vector. The length of the vectors Zp and a are written as

| 2 Il and |l a || ,respectively.

;LT

Figure 5.1.1 Figure 5.1.2 Figure 5.1.3

A vector whose length is 1 is called a unit vector; a unit vector whose di-
rection is the same as that of a is written as a’. A vector whose length is 0 is
called the zero vector and is written as 0. The initial point of the zero vector
coincides with its terminal point so that it represents a point,and it is also the
only vector with no specific direction. It is seen from the definition of vector
that a vector is determined completely by its length and direction and is inde-
pendent of the location of its initial point and terminal point. Therefore, two
vectors a and b are said to be equal if they have the same length and direc-
tion,denoted by a = b. For example,for the paraliclogram ABCD in Fig.5.1.

2,we have A = DC»AD = BC-
A vector is called the negative vector of a vector a,if it has the same

length as a but its direction is opposite to that of a ,denoted by — a (Fig.5.1.
3).Obviously,we have 4= —BA -

Let a and b be two nonzero vectors. Then a and b are said to be parallel
or collinear,denoted by a//b,if their directions are the same or opposite, be-
cause in this case,a and b can be moved to the same line by means of parallel
translation. The vectors @ and b are said to be orthogonal or perpendicular,
denoted by a_| b if the directions of a and b are orthogonal.

Suppose that a;,a;,*+ ,a, (k==3) are k vectors with a common initial
point. If they lie in the same plane,then we say that these vectors are copla-

nar. It is easy to see that any two vectors are coplanar.
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5.1.2 Linear operations on vectors

Addition of vectors

In physics, we often need to find the composition of displacements or
forces. For instance,consider a particle moving from the point O to the point
A,and then moving from the point A to the point B(Fig.5.1.4). The dis-

placement of the particle is equivalent to the one moving from the point O to

the point B. Hence, if we take a vector 5;4 from the initial point O to the
terminal point A,and then take a vector /‘Qg from the initial point A to the
terminal point B,then the total displacement 5§ is equal to the composition

of the two displacements; that is, 95 = DA * AB-

In general,we have the following definition.

Definition 5.1.1 (Triangle law of addition of vectors) Suppose that @ and b

are any two vectors and O is any point. If we draw a vector 52 =a from O to A
and then draw the vector TB = b starting from the terminal point A of a,then the
vector 5} is called the sum of a and b,denoted by a + b,that is,

a+b=pp or oat+ap-=op (Fig.5.1.4).

C B

0 3 /4

Figure 5.1.4 Figure 5.1.5
If the vectors a and b are not parallel, then we can also find their sum
according to the following parallelogram law. We take an arbitrary point O,

draw g4 = a,> o¢ = b,and take OA and OC as the adjoining sides of a paral-
lelogram OABC(Fig.5.1.5).Then a+ b= pp.

The addition of vectors satisfies the following laws:
(1) Commutative law a+b=b+a;
(2) Associative law  (a+b)+c=a+(b+c);
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3 a+0=a;

4 a+(-a)=0.
Here,(3) and (4) are obvious,and (1) and (2) are illustrated geometrically
in Fig.5.1.6 and Fig.5.1.7 respectively.

a+b+c

Figure 5.1.6 Figure 5.1.7

Multiplication by a scalar
Definition 5.1.2 Let A be a nonzero scalar and a a nonzero vector. Then the

product (or scalar multiple) of A and a is a vector,denoted by Aa.Its length is

Il @l =1a1 |l a | ,its direction is the same as that of a if A>>0 or is opposite
to that of a if A<<0(Fig.5.1.8).1If A =0 or a =0,we define Aa =0.
From definition 5.1.2 we have (- 1)a= —a,and a= | a || a’,where a’

is the unit vector with the direction of a,so that we have

a’=-—2 (5.1.1)
lal

provided a#0.Moreover,we define the difference of two vectors a and b by
a-b=a+(—-b).

According to the triangle law of addition of vectors,if the initial points of a

and b are the same,then the vector from the terminal point of b to the termi-

nal point of a is just the difference a — b (Fig.5.1.9).

H Y
4 S
NS 3
J §
N N

Figure 5.1.8 Figure 5.1.9

Products of scalars and vectors satisfy the following laws:
(1) Associative law A(za) = (An)a;
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(2) Distributive law ACa+b)=2a+ ab,

(A+m)a=2xra+ pra;
3)la=a.

We prove only the distributive law A(a + b) = E
Aa + Ab,leaving the others to the reader.If A =0, D

the equality holds obviously. Let A>>0 and draw g4 b

=a,pp=24a>4D= b, BE = Ab(Fig.5.1.10). Then © a Y B

the three points O, A, B are collinear, and ;{B // Figure 5.1.10

. loe!l _ I ol
BE - Therefore, (_)E = gf = A and the points O, D, E are also collin-
lopl 1oal

ear, O =4 Op - According to the triangle law,we have OE=2a+2ab,gop=
a+ b,and hence ACa+ b)Y = Aa + Ab.If A<C0,the proof is similar.

Addition and multiplication by a scalar are called by a joint name linear
operator on vectors.

From the above discussion we know that the length of a vector has the
following basic properties:

(1) Nonnegativity | a || >0,and [|a}l =0 & a=0;

(2) Absolute homogeneity | aa ll =[] [ al ;

(3) Triangle inequality |a+ b <[ al + | b1 ,where the sign of e-
quality holds & a and b have the same direction.

The geometric meaning of the triangle inequality is that the sum of the
lengths of two adjoining sides of a triangle is greater than or equal to the
length of the third side of the triangle.

5.1.3 Projection of vectors

To prepare for applications in the next section, we introduce the concept of
projection of a vector onto another vector. Let us begin with the included an-

gle between two vectors. Suppose that a and b are any two nonzero vectors.
Taking any point M in the space,we draw vectors MA=a> MmB = b(Fig.5.1.

11). Then the angle .~/ AMB (not greater than =) is called the included angle
between the vectors a and b,denoted by (a, b).If the included angle be-



