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PREFACE

HIS little bookis the outcome of lectures which Thavegivenat various

times and at different places (Gottingen, Berlin, Athens, Munich,
and at the University of Harvard). It contains the theory of conformal
representation ag it has developed during the last two decades. The first
half of the book deals with some elementary subjects, knowledge of which
is essential for the understanding of the general theory. The exposition
of this theory in the last three chapters uses the simplest methods available
to-day. _

The original manuseript, written in German, has been translated by
Mr B. M. Wilson of the University of Liverpool and by Miss Margaret
Kennedy of Newnham College. I wish to express here my warmest
thanks for the care they have taken that the most intricate arguments
should be made clear to the reader. I am also indebted to Prof. Erhard
Schmidt (Berlin) and to Prof. Tibor Radé (Columbus, Ohio) for various
improvements in the mathematical demonstrations, and to Miss Kennedy
for several suggestions that simplified the text. Finally, my thanks are
due to the staff of the Cambridge University Press for the admirable
way in which their part of the work has been carried out.

C. CARATHEODORY

ATHENS
December 1931
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INTRODUCTION
HISTORICAL SUMMARY

1. By an isogonal (winkelireu) representation of two areas om one
another we mean a one-one, continuous, and continuously differentiable
representation of the areas, which is such that two eurves of the first
area, which intersect at an angle o are transformed into two curves
intersecting at the same angle «. If the sense of rotation of a tangent
is preserved, an isogonal transformation is called conformal.

Disregarding as trivial the Euclidean magnification (Aknlickkeitsirans-
ormation) of the plane, we may say that the oldest known transformation
of this kind is the stereographic projection of the sphere, which was used
by Ptolemy (flourished in the second quarter of the second century ; died
after A.D. 161) for the representation of the celestial sphere; it trans-
forms the sphere conformally into a plane. A quite different conformal
representation of the sphere on a plane avea is given by ‘Mercator’s
Projection; in this the spherical earth, cut along a meridian circle, is
conformally represented on a plane strip. The first map constructed by
this transformation was published by Mercator (1512-1594) in 1568,
and the method has been universally adopted for the construction of
sea-maps. :

f

2. A comparison of two maps of the same country, one constructed
by stereographic projection of the spherical earth and the other by
Mercator’s Prgjection, will show that conformal transformation does not
imply similarity of corresponding figures. Other non-trivial conformal
representations of a plane area on a second plane area are obtained by
comparing the various stereographic projections of the spherical earth
which correspond to different positions of the centre of projection on
the earth’s surface. It was considerations such as these which led
Lagrange (1736-1813) in 1779 to obtain all conformal Tepresentations
of a portion of the earth’s surface on a plane area wherein all circles of
latitude and of longitude are represented by circular arcs(1).

3. In 1822 Gauss (1777-1855) stated and completely solved the
general problem of finding al conformal transformations which trans-
form a sufficiently small neighbourhood of a point on an arbitrary

C I



2 INTRODUCTION

analytic surface into a plane area@). This work of Gauss appeared to
give the whole inquiry its final solution; actually it left unanswered
the much more difficult question whether and in what way a given finite
portion of the surface can be represented on a portion of the plane.
This was first pointed out by Riemann (1826-1866), whose Dissertationn
(1851) marks a turning-point in the history of the problem which has
been decisive for its whole later development; Riemann not only intro-
duced all the ideas which have been at the basis of all subsequent
investigation of the problem of conformal representation, but also showed
that the problem itself is of fundamental importance for the theory of
functions ().

4. Riemann enunciated, among other results, the theorem that every
simply-connected plane area which does not comprise the whole plane
can be represented conformally on the interior of a circle. In the proof
of this theorem, which forms the foundation of the whole theory, he
assumes as obvious that a certain problem in the calculus of variations
possesses a solution, and this assumption, as Weierstrass (1815-1897)
first pointed out, invalidates his proof. Quite simple, analytic, and in
every way regular problems in the calculus of variations are now known
which do not always possess solutions(4). Nevertheless, about fifty years
after Riemanu, Hilbert was able to prove rigorously that the particular
problem which arose in Riemann’s work does possess a solution; this
theorem is known as Dirichlet’'s Principle(s).

Meanwhile, however, the truth of Riemann’s conclusions had been
established in a rigorous manner by C. Newmann and, in particular, by
H. A. Schwarz. The theory which Schwarz created for this purpose
is particularly elegant, interesting and instructive; it is, however, some-
what intricate, and uses a‘number of theorems from the theory of the
logarithmic potential, proofs of which must be included in any complete
account of the method. During the last decade or two the work of a
number of mathematicians has created new methods which make possible
a very simple treatment of our problem ; it is the purpose of the following
pages to give an account of these methods which, while as short as
possible, shall yet be essentially complete.



CHAPTER I
MOBIUS TRANSFORMATION

5. Conformal representation in general.

It is known from the theory of functions that an analytie funetion
w=f(z), which is regular and has a non-zero differential coefficient at
the point z= z,, gives a continuous one-one representation of a certain
neighbourhood of the point 2, of the z-plane on a neighbourhood of a
point w, of the w-plane.

Expansion of the function f(z) gives the series

w—wo=A(z—zo)+B(z~zo)2+...,} i
Hpos TTUTRITIL (571)
and if we write ) _ ]

z—zy=ré®, A=ae* w—w=pe ... (52)

where 7, A, and « are real, and 7, a, and p are positive, then (5:1) may

be written s N
pé=ard* {1 + ¢ (r,¢ ,} .
lim ¢(r,5)=0.  f (53)
70

This relation is equivalent to the following two relations:

p:ar‘{l'l'a(r,t)}, u=x+t+ﬁ<r,t), .
lim a(r, 1) =0, lim §(r, 2)= 0_} ------ (54)
-0 . .

‘When » = 0 the second of these relations becomes ‘
. w=A+t, .. (5°5)

and expresses the connection between the direction of a curve at the
point 2z, and the direction of the corresponding curve at the point w,.
Equation (5'5) shows in particular that the representation furnished by
the function w=/'(2) at the point z, is isogonal. Since the derivative

v r () has no zeros in a certain neighbourhood of z, it follows that the
representation effected by f (2) of a neighbourhood of 2, on a portion of
the w-plane is not only continuous but also conformal.

The first of the relations (54) can be expressed by saying that
“infinitely small” circles of the z-plane are transformed into infinitely
small circles of the w-plane. Non-trivial conformal transformations
exist however for which this is also true of finite circles; these trans-
formations will be investigated first.



4 MOBIUS TRANSFORMATION [cHAP. 1

6. Mobius Transformation.

Let 4, B, O denote three real or complex constants, 4, B, C their
conjugates, and 2, Z a complex variable and its conjugate; then the
equation

(A+A)ax+Bz+Bz+C+C=0 ... (6°1)
represents a real circle or straight line provided that
BB>(A+A4)(C+0). .. (6'2)

Conversely every real circle and every real straight line can, by suitable
choice of the constants, be represented by an equation of the form (6°1)
satisfying condition (6'2). If now in (6'1) we make any of the sub-
stitutions

y=x+), L. (6-3)
y=pr, .. (64)
or g= i ...... (65)

the equation obtained can be brought again.into the form (6°1), with
new constants 4, B, C which still satisfy condition (6:2). The substitu-
tion (65) transforms those circles and straight lines (671) for which
C+0=0, ie. those which pass through the point #=0, into straight
lines; we shall therefore regard straight lines as circles which pass
through the point = o.

7. If we perform successively any number of transformations (6°3),
(6°4), (6'5), taking each time arbitrary values for the constants A, g,
the resulting transformation is always of the form

_ez+f .
gt SR (1)

here «, B, y, 8 are constants which necessarily satisfy the condition
od — ,B'y :ﬁ o, L. (7'2)

since otherwise the right-hand member of (7'1) would be either constant
*or meaningless, and (7°1) would not give a transformation of the z-plane.
Conversely, any bilinear transformation (7'1) can easily be obtained by
means of transformations (6'8), (6'4), (6°5), and hence (7°1) also trans-
forms circles into circles.

The transformation (7°1) was first studied by Mobius (1) (1790-1868),
and will therefore be called Miobius' Transformation.

8. The transformation inverse to (7'1), namely

78yy+f’ (=) (0)-By#0, ..o (8°1)
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is also a Mobius’ transformation. Further, if we perform first the trans-
formation (7°1) and then a second Mébius’ transformation

_%y+ By _
z—')’l:’/+81’ a’lsl ﬁlYl%O’
the result is a third Mobius’ transformation
B Ar+B
A= Te+A’

with non-vanishing determinant

AA BT = (a3 - By) (% & =By #0.
Thus we have the theorem: ke aggregate of all Mobius’ transforma-
tions forms o group.

9. Equations (7°1) and (8'1) show that, if the z-plane is closed by the
addition of the point 2= w0, every Miobius transformation is a one-one
transformation of the closed x-plane into itself. 1f v+ 0, the point y=afy
corresponds to the point @ =, and y= o to £ =-38/y; but if y =0 the
points z = and y = « correspond to each other.

From (7-1) we obtain .
dy «d— By

dr~ (yo+ 8
50 that, by § 5, the representation is conformal except at the points 2= o
and #=-3/y. In order that these two points may cease to be ex-
ceptional we now extend the definition of conformal representation as
follows : a fanction y =/ () will be said to transform the neighbourhood
of a point 2, conformally into a neighbourhood of y = e if the function
n = 1/f(z) transforms the neighbourhood of 2, conformally into a neigh-

-bourhood of 3=0; also ¥ = () will be said to transform the neighbour-

“hood of 2= conformally into a neighbourhood of g, if

y=¢(&)=s(1/¢)
transforms the neighbourhood of =0 conformally into a neighbourhood
of y,. In this definition y, may have the value .
In virtue of the above extensions we now have the theorem: every

Mobius’ transformation gives @ one-one conformal representation of the
entire closed x-plane on the entire closed y-plane.

10. Invariance of the cross-ratio.

Let @, @, @, #, denote any four points of the z-plane, and i, ¥,
¥s, ¥4 the points which correspond to them by the Mébius’ transforma-
tion (7°1). If we suppose in the first place that all the numbers =, y;
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are finite, we have, for any two of the points,
ary+fB oz +B_ o8 — By
yor+8  ywi+ 8 (yamn+ 8)(yw+9)
and consequently, for all four,

(51— 54 (g — 92) _ (#1— @) (25— 25) (
(=9 @:-9) (@ —aa)(ws—m)

YB—¥:= (s — ),

The expression

(-7/'1 - 904) (xs - -Z'z)

(@1~ ;) (25— 24)
is called the cross-ratio of the four points 2, #2, @5, 24, so that, by (10-1),
the cross-ratio is invariant under any Mobius’ transformation.

A similar calculation shows that equation (10-1), when suitably modi-

fied, is still true if one of the numbers z; or one of the numbers g; is
infinite; 1if, for example, 2= = and 4, = o,

Ys—Ys  Tr— 2y

. ......(10'2)
Ys—Ys T3— T4

11. Let @, @, @; and ¥,, ¥, ¥s be two sets each containing three
unequal complex numbers. We will suppose in the first place that all
six numbers are finite. The equation

=9) 7~y _ (#1 = @) (23— 73)

i~ s~y (21— ) (23— )
when solved for y yields a Mobius’ transformation which, as is easily
verified, transforms each point #; into the corresponding point y*, and
§ 10 now shows that it is the only Mébius’ transformation which does so.
This result remains valid when one of the numbers #; or y; is infinite,
provided of course that equation (11°1) is suitably modified.

12. Since a circle is uniquely determined by three points on its eir-’
cumference, § 11 may be applied to find Msbius’ transformations which
transform a given circle into a second given circle or straight line. Thus,
for example, by taking z,=1, #x=4%, 2z=—1and y1,=0, =1, Y=o,
we obtain the transformation

11—z .
y—lm, ...... (121)

i.e. one of the transformations which represent the cirele | 2 | = 1 on the
real axis, and the interior | 2| <1 of the unit-circle on the wpper half
of the y-plane. By a different choice of the six points #;, y: we can
represent the exterior |z | > 1 of the unit-circle on this same half-plane.
* The determinant of this transformation has the value
ad - By=(y, - ¥2) (1~ ¥3) (y2— ¥s) (21— %) (21 — T3} (T3~ g},
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In particular by taking the three points %; on the same circle as the
points #; we can transform the interior of this cirele into itself or into
the exterior of the circle according as the points @, 22, #; and ¥1, ¥s, ¥s
determine the same or opposite senses of description of the perimeter.
If, for example, in (11'1) we put 1, =0, y.=1, ¥3=®, and then success-
ively #,=1, #,=®, ;=0 and ;= 0, 2,=1, 2, =0, we obtain the two
transformations

; y=(@~1)jz and y=1z; . (12°2)
the first transforms the upper half-plane into itself, whereas the second
transforms it into the lower half-plane.

13. Pencils of circles.

Since a Mobius’-transformation is conformal it transforms orthogonal
circles into orthogonal circles. We shall now show that, given any two
circles A and B, we can find a Mobius' transformation which transforms
them either into two straight lines or into two concentric circles.

If A and B have at least one common point P, then any Mobius’
transformation whereby P corresponds to the point oo transforms A
and B into straight lines; these lines intersect or are parallel according
as A and B have a common point other than 2, or not.

/ | / \
/ P/ \
/ | I/ \\
{
: : )
!
\\ 'M | A1
\ | J
AN 1 J
(O I s
R
——n—
@
Fig, 1

If A and B have no common point, first transform the circle 4 by a
Msbius’ transformation into a straight line 4,, and let B, be the circle
corresponding to B; A, and B, do not intersect. Draw the straight line /
through the centre of B, perpendicular to 4;; let the foot of this per-
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pendicular be M. With centre M draw the circle C cutting B, orthogon-
ally. By a second Mobius’ transformation we can transform the cirele ¢
and the straight line / into two (orthogonal) intersecting straight lines;
A;, B, are thereby transformed into two circles A,, B,, which cut both
these straight lines orthogonally and are therefore concentric.

14. Given two intersecting straight lines there is a family of concentric
circles orthogonal to both; given two parallel straight lines there is a
family of parallel straight lines orthogonal to both ; and given two concen-
tric circles there is a family of intersecting straight lines orthogonal to
both. Each of these families of circles or straight lines consists of all circles
(or straight lines) of the plane which cut both the given lines or cireles
orthogonally. Since a Mébius’ transformation is isogonal it follows that:
given any two circles A, B, there exists exactly one one-parametric Jamily
of circles which cut A and B orthogonally ; this family is called the pencil
of circles conjugaite to the pair A, B.

If the circles A and B intersect in two points P, @ of the plane, no
two circles of the conjugate pencil can intersect, and the pencil is then
said to be elliptic. No circle of the pencil passes through either of the
points P, @, which are called the limiting points of the peneil.

Secondly, if 4 and B touch at a point 2, the conjugate pencil consists
of circles all of which touch at P, and is called parabolic; P is the
common point (Knotenpunkt) of the pencil.

Lastly, if A and B have no point in common, the conjugate pencil
consists of all circles which pass through two fixed points, the common
points of the pencil, and is called Ayperbolic.

15. Considering the three types of pencils of circles as defined in §14,
we see that if €, D are any two circles of the pencil conjugate to 4, B,
then A, B belong to the pencil conjugate to €, D. This pencil containing
4, B is independent of the choice of the two circles €, D, and we there-
fore have the following theorem: there is one and only one pencil of circles
which contains two arbitrarily given circles; i.e. a pencil of circles is
uniquely determined by any two of its members.

We see further from the three standard forms of pencils that : through
every point of the plane which is neither a limiting point nor a common
point of a given pencil of circles there passes exactly one circle of the pencil.

16. Bundles of circles.

- Let A4, B, C be three circles which do not all pass through a common
point . If A, B have no common point we can transform them (§13)
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by a Mabius’ transformation into concentric circles 4,, B,, and that
common diameter of 4, and B, which cuts C, (the circle into which ¢
is transformed) orthogonally is a circle of the plane cutting all three
circles 4,, B;, O, orthogonally. Hence a circle exists which cuts all
three circles A, B, C orthogonally.

Secondly, if 4 and B touch, there is a Mobius’ transformation which
transforms them into two parallel straight lines, and € into a circle C,.
Since C, has one diameter perpendicular to the two parallel straight
lines, a circle exists in this case also cutting all three circles 4, B, C
orthogonally. / '

Finally, if 4 and B have two points in common, there is a Mobius’
transformation which transforms them into two straight lines intersecting
at a point O, and C'into a circle €, which does not pass through 0. Two
cases must now be distinguished : if O lies outside the circle O, there is

Fig. 2 Fig. 3

again a eircle cutting 4,, By, and C, orthogonally; whereas if O lies
tnstde C; there is a circle T such that each of the circles A, B, O,
intersects I' at the extremities of a diameter of I.

We have thus proved the following theorem: any three coplanar circles
must satisfy at least one of the following conditions : the three circles hawe
a common orthogonal circle K, or they pass through o common point, or
they can be transformed by a Mobius' transformation into three circles
which cut a fized circleT at the extremities of a diameter of . It follows
readily from the proof given that if the three circles 4, B, € do not
belong to the same pencil the circle K is unique; further, it will be
proved below that three given circles cannot satisfy more than one of the
three conditions enumerated.
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17. We now define three types of families of circles which we call bundles
of circles.

An elliptic bundle of circles consists of all circles of the plane which
cut a fixed circle T at the extremities of a diameter of T. The circle
T itself belongs to the bundle and is called the equator of the bundle.

A parabolic bundle of circles consists of all circles of the plane which
pass through a fixed point, the common point of the bundle. ,

A hyperbolic bundle of circles consists of all circles of the plane which
cut a fixed circle or straight line orthogonally.

These three figures are essentially distinct: every pair of circles of an
elliptic bundle intersect at two points; every pair of cireles of a parabolic
bundle either intersect at two points or touch one another; but a hy-
perbolic bundle contains pairs of cireles which have no common point.

18. Bundles of circles nevertheless possess very remarkable common -
properties. For example: ¢f A, B are two circles of a bundle, all the
circles of the pencil which contains A, B belong to this bundle. For a
parabolic bundle the truth of this theorem is obvious; for a hyperbolic
bundle it follows from the fact that the orthogonal circle of the bundle
cuts the circles 4, B—and therefore cuts every circle of the pencil
containing 4, B—orthogonally; and for an elliptic bundle it follows
from an elementary theorem of Euclid.

The proof of the following theorem is equally simple: {f @ plane
contains a bundle of circles and an arbitrary point P, which, if the
bundle is parabolic, does not coincide with the common point of the bundle,
then P lies on an infinite number of circles of the bundle, and these circles
through P form & pencil.

19. Let 4, B, ¢ be three circles of a bundle which do not belong to
the same pencil, and let D be any fourth circle of the bundle; then,
starting with 4, B, € we can, by successive construction of pencils,
artive at a pencil of circles which contains 2, and all of whose members
are circles of the bundle. For there is on D at least one point P which
is neither a common point nor a limiting point of either of the two pencils
determined by 4, B and by 4, C and which does not lie on 4 ; we can
therefore draw through P two circles J, F) so that & belongs to the
pencil 4, B, and F to the pencil 4, C. The circles E, I are distinet,
since 4, B, C do not belong to the same pencil, and the second theorem
of §18 now shows that D belongs to the pencil determined by £, F.
Tt follows that a bundle of circles is uniquely determined by any three
of its members which do not belong to the same pencil, and in particular

N &1
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that three circles of an elliptic bundle which do not belong to the same
pencil cannot have a common orthogonal circle; for if they had they
would define a bundle that was both elliptic and hyperbolic.

20. The circles obtained by applying a Mobius’ transformation to all
the circles of a bundle also form a bundle, and the two bundles are of
the same kind.

For parabolic and hyperbolic bundles this theorem is an immediate
consequence of the definitions of these figures. We therefore denote by
M the aggregate of circles obtained from the circles of a given elliptic
bundle by means of a Mabius’ transformation; all those circles of M

-which pass through the point o form a pencil of straight lines, inter-
secting at a point O of the plane. Let 4, B be any two straight lines
through O, and let C be any third circle of M. Since, by § 19, the circles

. A, B, C cannot have a common orthogonal circle, the point O must be

interior to C, and consequently, by § 16, the circles 4, B, C belong to

an elliptic bundle, the circles of which can all be obtained from A4, B, C
by successive construction of pencils. And this bundle must be iden-
tical with M, since M is obtained by precisely the same construction.

21. This last result, together with § 16, shows that any three co-planar
circles which do not belong to the same pencil determine exactly one
bundle.

22. A bundle of circles cannot contain an elliptic pencil together with

its conjugate hyperbolic pencil. For since, by §17, neither an elliptic
nor a parabolic bundle can contain an elliptic pencil, the given bundle
would necessarily be Ayperbolic, so that there would be a circle, the
orthogonal circle of the bundle, cutting all members of the two given
conjugate pencils orthogonally; but this is impossible.

23. Inversion with respect to a circle.

Given a straight line @ and a point P, let P* be the image-point of
P in a; we shall call P* the inverse point of P with respect to . More
generally, given a fixed circle 4, we can, by a Mobius’ transformation,
transform A into a straight line; consequently for every point P there
is a point P* inverse to P with respect to 4, and P* is characterised
by the fact that every circle through P and orthogonal to A also passes
through P*, ‘

The operation of inversion is involutory; further, the figure formed
by a circle 4 and two inverse points is transformed by any Mobius’
transformation into a circle 4 and two inverse points. Thus, since



