SFEERIE 20w

Programming

Collective
Intellige

S

O'REILLY" E ey
% &K% Rt Toby Segaran &

SHREERE (FOR)

Programming Collective Intelligence

Toby Segaran

O'REILLY"

Beijing ¢ Cambridge « Farnham < Koln « Paris Sebastopol « Taipei Tokyo

O'Reilly Media, Inc. A & i K 5 1 BAE 4 ik

RAEKE HARAL

BH#EmmE (CIP) HiE

ERmEER. P/ (3£) FEHE (Segaran, T.)

F . —EA . —FEat: ARERAE ML, 2008.3
454 3. Programming Collective Intelligence
ISBN 978-7-5641-1139-7

1.4 T.#- . ETHIVE - BRFRH —5R3
IV .TP393.092

v B AR A A5 5 CIP etz (2008) 58 024161 %

LA AR ZEVERLA TR IE
B, 10-2007-222 =

©2007 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2008. Authorized reprint of the original English edition, 2007 O'Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.

% & #hop O'Reilly Media, Inc. # & 2007,

LYY & & k2 ik ik 2008, 3 PR IR 9tk RRA 4K AR AT 2]k BRAR AR 4K B ALK BT AT A —— O'Reilly
Media, Inc. ##% 7T ,

WAHTA, AFHEAT, KB OETIH o 2R AETH XEH,

B EmE

IR %47 ZRPE RS H R AL

o fib: FERPUAER2 S H3 4 : 210096
R A L ®

| fik: http://press.seu.edu.cn

B, T-#B{:: press@seu.edu.cn

EN Ril: 4% i EDRIA B 2 =

A T8TEHK x 980K 16 FFA
EN Bk . 22.75 EIgk

= ¥. 378 T =

hiz . 2008 4E3 A 1 hi

ER . 2008 43 HEE 1 RENAI

45 2. ISBN 978-7-5641-1139-7/TP - 183
Efl $. 1~2500 fi

€ Hr: 58.00 ¢ ()

At EBE AR, HEESIEERSMKR, B (fFH). 025-83792328

O’Reilly Media, Inc. /43

T R X WA AR B R S IR E I ok, R A AL E S AR AL
O’Reilly Media, Inc. #AURE A MR AL, BHEE AR — LA FIA US4
HEEARLE,

O’Reilly Media, Inc. £t |- 7F Unix, X, Internet F1: fth 7T ik & 45 B 45 43k B 4 45
SHL ALY AR 2w, R R AL AR A S

M &% H#H) (The Whole Internet User’s Guide & Catalog) (#i41%)4s 3 B354 1E A
iR EREASOAF Z—) B GNN (B FAY Internet [T A FIRG ML 35), FEE
WebSite (55—~ 515 PCAHIWeb IR %5 2 ¥4) , O’Reilly Media, Inc.— B &b F Internet
K I B B BT VY

T ZHERRBIERY, O Reilly Media, Inc. 2 Fcfa & B H B HLE S H IR — 45—
A —IRFFR. SKEHHFEILEHREMEL, O’Reilly Media, Inc. LHHE
MR L H 5, XER O Reilly Media, Inc. & T —A4EH 7[R T 2 fih H AR 7S
HIHRR 75 &, O’Reilly Media, Inc. i M 4ak A R UARTHBRARF 5, &R TL%
IR L% . O’Reilly Media, Inc. ;B4 ¥ £ [& FITEE BER —— b (114 B 2 AH 340
BB AER., SWER, MBAEREEIE, O'Reilly Media, Inc. {4 b 15 I #
#EtHE 45, Bh O’Reilly Media, Inc. E##h 5HBHLL RBERE, FTLL O’ Reilly
Media, Inc. 41 H % F HIEFEH 2B,

tH hiRijt BA

BE & H R HLE AR W BB 2R, AR IETES A — A AR & SRt 9. i35
PLE AR & SR AR Tl A 7= . Wk & 2h A0 B AT R R T ERRIROMA . AR
AL AT R A 39733 B 2 et R AR TR A, A T R Bl B B AR B A S — I]
TRRE SR HTIE A, AR R AR FISE [O'Reilly Meida, Inc. ik gebpilt, Hfk
S5 % RRIR R AT AR B LS = A & A RE R, LR AR S &
SRR Rk I . Horh, ER B Hok 5 EAME S WP Hkk, HH R
R I IEE

AR A 28, P75 3k i A 85 Rt B AR AT I R N B . BHIFHLA OB R 7
FEs B il AR (2 SV A TR BT s By, »HE N H R AR & B Bt h&.OME
B E R E LRI

Bt AR IR EN AR P 45, A

o A SQL (GZENRR)

e JavaScript & DHTML Cookbook % kit (FZENAR)
o R EEE GEHUR)

* SOA stk (FZENAR)

e 223 PHP & MySQL % — I (FZENRR)

e Linux Z&i4afe (GZENAR)

e Beautiful Code (FZENKR)

e Mac OS X: The Missing Manual, Leopard Editon (ZEAR)
o mtEREMISE (FZEMAR)

o WPF Zuft %8 —hk (GZENRR)

o IR EAR GEENRR)

e 2% Python ¢ =it (FZENAR)

e Ruby B FikitiEs (FEIRR)

Foreword

When Time magazine picked “You” as the Person of the Year for 2006, it cemented
the idea that Web 2.0 is about “user-generated content”—and that Wikipedia,
YouTube, and MySpace are the heart of the Web 2.0 revolution. The true story is far
more complex than that. The content that users contribute explicitly to Web 2.0
sites is the small fraction that is visible above the surface. Eighty percent of what
matters is below, in the dark matter of implicitly contributed data.

In many ways, the defining moment of the Web 2.0 revolution was Google’s inven-
tion of PageRank, the realization that every link on the World Wide Web was
freighted with hidden meaning: a link is a vote about the importance of a site.
Understanding those votes, and the relative importance of the sites that were voting,
gave better search results than merely studying the web pages themselves. It was the
breakthrough that launched Google on its path to becoming the most important tech
company of the new century. PageRank is now one of hundreds of implicit factors
that Google uses in deciding which search results to feature.

No one would characterize Google as a “user-generated content” company, yet it is
clearly at the very heart of Web 2.0. That's why I prefer the phrase “harnessing
collective intelligence” as the touchstone of the revolution. A link is user-generated
content, but PageRank is a technique for extracting intelligence from that content. So
are Flickr’s “interestingness” algorithm, Amazon’s “people who bought this product
also bought...” feature, Last.fm’s algorithms for “similar artist radio,” eBay’s reputa-
tion system, and Google’s AdSense.

I defined Web 2.0 as “the design of systems that harness network effects to get better
the more people use them.” Getting users to participate is the first step. Learning
from those users and shaping your site based on what they do and pay attention to is
the second step.

In Programming Collective Intelligence, Toby Segaran teaches algorithms and
techniques for extracting meaning from data, including user data. This is the
programmer’s toolbox for Web 2.0. It’s no longer enough to know how to build a

database-backed web site. If you want to succeed, you need to know how to mine
the data that users are adding, both explicitly and as a side effect of their activity on
your site.

There’s been a lot written about Web 2.0 since we first coined the term in 2004, but
in many ways, Toby’s book is the first practical guide to programming Web 2.0
applications.

—Tim O’Reilly

xvi | Foreword

Preface

The increasing number of people contributing to the Internet, either deliberately or
incidentally, has created a huge set of data that gives us millions of potential insights
into user experience, marketing, personal tastes, and human behavior in general.
This book provides an introduction to the emerging field of collective intelligence. It
covers ways to get hold of interesting datasets from many web sites you’ve probably
heard of, ideas on how to collect data from users of your own applications, and
many different ways to analyze and understand the data once you’ve found it.

This book’s goal is to take you beyond simple database-backed applications and
teach you how to write smarter programs to take advantage of the information you
and others collect every day.

Prerequisites

The code examples in this book are written in Python, and familiarity with Python
programming will help, but [provide explanations of all the algorithms so that pro-
grammers of other languages can follow. The Python code will be particularly easy to
follow for those who know high-level languages like Ruby or Perl. This book is not
intended as a guide for learning programming, so it’s important that you’ve done
enough coding to be familiar with the basic concepts. If you have a good understand-
ing of recursion and some basic functional programming, you’ll find the material
even easier.

This book does not assume you have any prior knowledge of data analysis, machine
learning, or statistics. I've tried to explain mathematical concepts in as simple a
manner as possible, but having some knowledge of trigonometry and basic statistics
will be help you understand the algorithms.

xvii

Style of Examples

The code examples in each section are written in a tutorial style, which encourages
you to build the applications in stages and get a good appreciation for how the algo-
rithms work. In most cases, after creating a new function or method, you’ll use it in
an interactive session to understand how it works. The algorithms are mostly simple
variants that can be extended in many ways. By working through the examples and
testing them interactively, you’ll get insights into ways that you might improve them
for your own applications.

Why Python?

Although the algorithms are described in words with explanations of the formulae
involved, it’s much more useful (and probably easier to follow) to have actual code
for the algorithms and example problems. All the example code in this book is
written in Python, an excellent, high-level language. I chose Python because it is:

Concise
Code written in dynamically typed languages such as Python tends to be shorter
than code written in other mainstream languages. This means there’s less typing
for you when working through the examples, but it also means that it’s easier to
fit the algorithm in your head and really understand what it’s doing.

Easy to read
Python has at times been referred to as “executable pseudocode.” While this is
clearly an exaggeration, it makes the point that most experienced programmers
can read Python code and understand what it is supposed to do. Some of the less
obvious constructs in Python are explained in the “Python Tips” section below.

Easily extensible
Python comes standard with many libraries, including those for mathematical
functions, XML (Extensible Markup Language) parsing, and downloading web
pages. The nonstandard libraries used in the book, such as the RSS (Really
Simple Syndication) parser and the SQLite interface, are free and easy to down-
load, install, and use.

Interactive
When working through an example, it’s useful to try out the functions as you
write them without writing another program just for testing. Python can run
programs directly from the command line, and it also has an interactive prompt
that lets you type in function calls, create objects, and test packages interactively.

Multiparadigm
Python supports object-oriented, procedural, and functional styles of program-
ming. Machine-learning algorithms vary greatly, and the clearest way to

xviii | Preface

implement one may use a different paradigm than another. Sometimes it’s use-
ful to pass around functions as parameters and other times to capture state in an
object. Python supports both approaches.

Multiplatform and free
Python has a single reference implementation for all the major platforms and is
free for all of them. The code described in this book will work on Windows,
Linux, and Macintosh.

Python Tips

For beginners interested in learning about programming in Python, I recommend
reading Learning Python by Mark Lutz and David Ascher (O’Reilly), which gives an
excellent overview. Programmers of other languages should find the Python code rel-
atively easy to follow, although be aware that throughout this book I use some of
Python’s idiosyncratic syntax because it lets me more directly express the algorithm
or fundamental concepts. Here’s a quick overview for those of you who aren’t
Python programmers:

List and dictionary constructors

Python has a good set of primitive types and two that are used heavily throughout
this book are list and dictionary. A list is an ordered list of any type of value, and it is
constructed with square brackets:

number list=[1,2,3,4]

string list=['a', 'b', 'c', 'd']

mixed list=['a', 3, 'c', 8]
A dictionary is an unordered set of key/value pairs, similar to a hash map in other
languages. It is constructed with curly braces:

ages={'John':24, 'Sarah':28, 'Mike':31}
The elements of lists and dictionaries can be accessed using square brackets after the
list name:

string_list[2] # returns 'b'
ages['Sarah'] # returns 28

Significant Whitespace

Unlike most languages, Python actually uses the indentation of the code to define
code blocks. Consider this snippet:
if x==1:
print 'x is 1'
print 'Still in if block'
print 'outside if block'

Preface | xix

The interpreter knows that the first two print statements are executed when x is 1
because the code is indented. Indentation can be any number of spaces, as long as it
is consistent. This book uses two spaces for indentation. When entering the code
you’ll need to be careful to copy the indentation correctly.

List comprehensions

A list comprehension is a convenient way of converting one list to another by filtering
and applying functions to it. A list comprehension is written as:

[expression for variable in list]
or:

[expression for variable in list if condition]
For example, the following code:

11:[1:2)3:4;5)617,!8)9]
print [v*¥10 for v in 11 if vi>4]

would print this list:
[50,60,70,80,90]

List comprehensions are used frequently in this book because they are an extremely
concise way to apply a function to an entire list or to remove bad items. The other
manner in which they are often used is with the dict constructor:
11:[112)3J4)5)617)8)9]
timesten=dict([(v,v*10) for v in 11])
This code will create a dictionary with the original list being the keys and each item
multiplied by 10 as the value:

{1:10,2:20,3:30,4:40,5:50,6:60,7:70,8:80,9:90}

Open APIs

The algorithms for synthesizing collective intelligence require data from many users.
In addition to machine-learning algorithms, this book discusses a number of Open
Web APIs (application programming interfaces). These are ways that companies
allow you to freely access data from their web sites by means of a specified protocol;
you can then write programs that download and process the data. This data usually
consists of contributions from the site’s users, which can be mined for new insights.
In some cases, there is a Python library available to access these APIs; if not, it’s
pretty straightforward to create your own interface to access the data using Python’s
built-in libraries for downloading data and parsing XML.

Here are some of the web sites with open APIs that you’ll see in this book:

xx | Preface

del.icio.us
A social bookmarking application whose open API lets you download links by
tag or from a specific user.

Kayak
A travel site with an API for conducting searches for flights and hotels from
within your own programs.

eBay
An online auction site with an API that allows you to query items that are cur-
rently for sale.

Hot or Not
A rating and dating site with an API to search for people and get their ratings
and demographic information.

Akismet
An API for collaborative spam filtering.

A huge number of potential applications can be built by processing data from a
single source, by combining data from multiple sources, and even by combining
external information with input from your own users. The ability to harness data cre-
ated by people in a variety of ways on different sites is a principle element of creating
collective intelligence. A good starting point for finding more web sites with open
APIs is ProgrammableWeb (http://www.programmableweb.com).

Overview of the Chapters

Every algorithm in the book is motivated by a realistic problem that can, I hope, be
easily understood by all readers. I have tried to avoid problems that require a great
deal of domain knowledge, and I have focused on problems that, while complex, are
easy for most people to relate to.

Chapter 1, Introduction to Collective Intelligence
Explains the concepts behind machine learning, how it is applied in many differ-
ent fields, and how it can be used to draw new conclusions from data gathered
from many different people.

Chapter 2, Making Recommendations
Introduces the collaborative filtering techniques used by many online retailers to
recommend products or media. The chapter includes a section on recommend-
ing links to people from a social bookmarking site, and building a move
recommendation system from the MovieLens dataset.

Chapter 3, Discovering Groups
Builds on some of the ideas in Chapter 2 and introduces two different methods
of clustering, which automatically detect groups of similar items in a large
dataset. This chapter demonstrates the use of clustering to find groups on a set
of popular weblogs and on people’s desires from a social networking web site.

Preface | xxi

Chapter 4, Searching and Ranking
Describes the various parts of a search engine including the crawler, indexer, and
query engine. It covers the PageRank algorithm for scoring pages based on
inbound links and shows you how to create a neural network that learns which
keywords are associated with different results.

Chapter 5, Optimization
Introduces algorithms for optimization, which are designed to search millions of
possible solutions to a problem and choose the best one. The wide variety of
uses for these algorithms is demonstrated with examples that find the best flights
for a group of people traveling to the same location, find the best way of match-
ing students to dorms, and lay out a network with the minimum number of
crossed lines.

Chapter 6, Document Filtering
Demonstrates Bayesian filtering, which is used in many free and commercial
spam filters for automatically classifying documents based on the type of words
and other features that appear in the document. This is applied to a set of RSS
search results to demonstrate automatic classification of the entries.

Chapter 7, Modeling with Decision Trees
Introduces decision trees as a method not only of making predictions, but also of
modeling the way the decisions are made. The first decision tree is built with
hypothetical data from server logs and is used to predict whether or not a user is
likely to become a premium subscriber. The other examples use data from real
web sites to model real estate prices and “hotness.”

Chapter 8, Building Price Models
Approaches the problem of predicting numerical values rather than classifica-
tions using k-nearest neighbors techniques, and applies the optimization
algorithms from Chapter 5. These methods are used in conjunction with the
eBay API to build a system for predicting eventual auction prices for items based
on a set of properties.

Chapter 9, Advanced Classification: Kernel Methods and SVMs
Shows how support-vector machines can be used to match people in online dat-
ing sites or when searching for professional contacts. Support-vector machines
are a fairly advanced technique and this chapter compares them to other methods.

Chapter 10, Finding Independent Features
Introduces a relatively new technique called non-negative matrix factorization,
which is used to find the independent features in a dataset. In many datasets the
items are constructed as a composite of different features that we don’t know in
advance; the idea here is to detect these features. This technique is demon-
strated on a set of news articles, where the stories themselves are used to detect
themes, one or more of which may apply to a given story.

xxii | Preface

Chapter 11, Evolving Intelligence
Introduces genetic programming, a very sophisticated set of techniques that goes
beyond optimization and actually builds algorithms using evolutionary ideas to
solve a particular problem. This is demonstrated by a simple game in which the
computer is initially a poor player that improves its skill by improving its own
code the more the game is played.

Chapter 12, Algorithm Summary
Reviews all the machine-learning and statistical algorithms described in the book
and compares them to a set of artificial problems. This will help you understand
how they work and visualize the way that each of them divides data.

Appendix A, Third-Party Libraries
Gives information on third-party libraries used in the book, such as where to
find them and how to install them.

Appendix B, Mathematical Formulas
Contains formulae, descriptions, and code for many of the mathematical concepts
introduced throughout the book.

Exercises at the end of each chapter give ideas of ways to extend the algorithms and
make them more powerful.

Conventions

The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).
Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities.
Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, HTML tags, macros, the contents of
files, or the output from commands.
Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic
Shows text that should be replaced with user-supplied values.

A

This icon signifies a tip, suggestion, or general note.

.

‘l
."

Preface | xxiii

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Programming Collective Intelligence
by Toby Segaran. Copyright 2007 Toby Segaran, 978-0-596-52932-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book where we list errata, examples, and any additional
information. You can access this page at:

http:/f'www.oreilly.com/catalog/9780596529321
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http:/fwww.oreilly.com

xxiv | Preface

Safari® Books Online

.54 When you see a Safari® Books Online icon on the cover of your
Safa rl “ favorite technology book, that means the book is available online

Beoksontine through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the mbst accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments

I’d like to express my gratitude to everyone at O’Reilly involved in the development
and production of this book. First, Id like to thank Nat Torkington for telling me
that the idea had merit and was worth pitching, Mike Hendrickson and Brian Jep-
son for listening to my pitch and getting me excited to write the book, and especially
Mary O’Brien who took over as editor from Brian and could always assuage my fears
that the project was too much for me.

On the production team, I want to thank Marlowe Shaeffer, Rob Romano, Jessamyn
Read, Amy Thomson, and Sarah Schneider for turning my illustrations and writing
into something you might actually want to look at.

Thanks to everyone who took part in the review of the book, specifically Paul Tyma,
Matthew Russell, Jeff Hammerbacher, Terry Camerlengo, Andreas Weigend, Daniel
Russell, and Tim Wolters.

Thanks to my parents.

Finally, I owe so much gratitude to several of my friends who helped me brainstorm
ideas for the book and who were always understanding when I had no time for them:
Andrea Matthews, Jeff Beene, Laura Miyakawa, Neil Stroup, and Brooke Blumen-
stein. Writing this book would have been much harder without your support and I
certainly would have missed out on some of the more entertaining examples.

Preface | xxv

About the Author

Toby Segaran is a director of software development at Genstruct, a computational
biology company, where he designs algorithms and applies data-mining techniques
to help understand drug mechanisms. He also works with other companies and
open source projects to help them analyze and find value in their collected datasets.
In addition, he has built several free web applications including the popular tasktoy
and Lazybase. He enjoys snowboarding and wine tasting. His blog is located at
blog.kiwitobes.com. He lives in San Francisco.

Colophon

The animals on the cover of Programming Collective Intelligence are King penguins
(Aptenodytes patagonicus). Although named for the Patagonia region, King Penguins
no longer breed in South America; the last colony there was wiped out by 19th-
century sealers. Today, these penguins are found on sub-Antarctic islands such as
Prince Edward, Crozet, Macquarie, and Falkland Islands. They live on beaches and
flat glacial lands near the sea. King penguins are extremely social birds; they breed in
colonies of as many as 10,000 and raise their young in creches.

Standing 30 inches tall and weighing up to 30 pounds, the King is one of the largest
types of penguin—second only to its close relative the Emperor penguin. Apart from
size, the major identifying feature of the King penguin is the bright orange patches on
its head that extend down to its silvery breast plumage. These penguins have a sleek
body frame and can run on land, instead of hopping like Emperor penguins. They are
well adapted to the sea, eating a diet of fish and squid, and can dive down 700 feet,
far deeper than most other penguins go. Because males and females are similar in size
and appearance, they are distinguished by behavioral clues such as mating rituals.

King penguins do not build nests; instead, they tuck their single egg under their
bellies and rest it on their feet. No other bird has a longer breeding cycle than these
penguins, who breed twice every three years and fledge a single chick. The chicks are
round, brown, and so fluffy that early explorers thought they were an entirely
different species of penguin, calling them “woolly penguins.” With a world popula-
tion of two million breeding pairs, King penguins are not a threatened species, and
the World Conservation Union has assigned them to the Least Concern category.

The cover image is from J. G. Wood’s Animate Creation. The cover font is Adobe
ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

