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PREFACE

This book is intended as {: text for a graduate course in electromagnetic theory. I
began to write it after teaching such a course at M.1.T. and Northeastern University
for several years and being dissatisfied with the existing texts. The reader will
judge whether or not I have succeeded in writing a better one, but here I wonld like
to show, at least obliquely, the reasons for my dissatisfaction, by outlining the text
and my reasons for writing it as I have done.

. The book is divided into two main parts: static fields and time-varying fields.
Of course, this division is no novelty; it reflects history and is incorporated in large
numbers of textbooks. It has the consequence that the electric and magnetic fields

- are considered as seéparate entities until they are amalgamated by special relativity -
and the Lorentz transformation. Since relativity theory tends these days to be
taught earlier and earlier in the physics students’ career, the possibility is nuw open
of altering this canonical (static/time-varying) division. After the electrostatic field
is discussed one can, with some confidence, introduce the magnetic field as a result
of v1ewmg an electric field from a moving frame. This approach has some merit, and
[ have not dismissed it lightly. It is more basic,ina. way, in that only one field need
be postulated ; the other can then be derived from it using relativistic transforma-
tions which must eventually be introduced anyway. And the symmetry between
electric and magnetic fields that is made manifest by relativity is aesthetically very
satisfying. But the amount of relativity theory that must be introduced before the
magnetic field emerges from the transformed electric field is considerable. I think -

.the danger of the student not seeing the wood for the trees outweighs the advantages
of this procedure and so I have not adopted it.

When dealing with static fields, the field concept is, in fact, superfluous. All of
electrostatics is comprised (in principle) in Coulomb’s law for the force between

two charges and in the law of superposition, and all of magnetostatics i Ampére’s. !

law for the force between two currents. The split of Coulomb’s law into a field
produced by one charge, which field then acts on another, is a convenience for
static charges, but it is not conceptually necessary. A similar remark applies to the
division of Ampére’s law.into the production of a field by one stdtionary current -
-and its action on a second. It is only for time-varying fields that the field concept
assumes its real lmportance as a way of preserving the consefvation laws of energy -
and momentum. ‘But since one is forced eventually to introduce the idea of field, it
is useful pedagogically to mtroduce it as soon as possible, i.e., in wnnectlon vmh i

v
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statics, to promote familiarity and ease with it. Nonetheless, I have also felt it
important to clarify the status of the field concept, and so have prefaced the
chapters on static fields by one called “Concepts of a Field Theory” which essenti-
ally contains an elaboration of the remarks above.

Beyond the static/time-varying division, there is a kind of threefold symmetry.
The book treats essentially three kinds of fields: the electric, the magnetic, ahd their
amalgam, the time-varying electromagnetic field. Each of the treatments follows
the same pattern, and the shape of this pattern is*partly given by the idea of the
“summation problem.”* By this is meant the problem of evaluating the field from
an integral expression over the given. known sources, i.e., charges or currents. The
- summation problem is meant to stand in contrast to boundary-value problems
with matter in which matter effectively acts as the source of charges or current that
are not known, or given, in advance of solving the problem. I have found this
division, into a definition of a field and its corresponding summatlon problem, a
sound one pedagogically and am convinced of its usefulnéss. :

- Chapter by-chapter, the book develops as follows. After the first chapter on
concepts of a field theory Chapter 2, on electrostatics, discusses properties of the
electric field and of the scalar potential ®. The chapter ends with the superposition
integral for the potential ® due to an arbltrary continuous or dlscrete charge
distribution.

The problem of actually evaluating this integral for charge distributions of one
kind or another is then the summation problem for electfostatics, the subject of
Chapter 3. In it are considered distributions which occupy a finite volume and the
corresponding multipole expansion ; two-dimensional and one-dimensional distri-
butions; surface charges and double layers; and dipolar distribvitions. One merit
of a rather complete discussion of the kinds of distributions pgssible is that many_
of them are forced to our attention later. In Green’s theorem, for example, the con-
cept of surface charge and double layer enter, but it is very y useful to have encountered
these before coping with whatever other difficulties Green’s theorem may entail.
Slmnlarly, the discussion in this chapter of the external field of" dlpole distributions
is immediately applicable to a later theory of dielectrics.

Chapter 4 is on boundary-value prob}ems with perfect conductors. It mlght
have been subtitled “The Field of Unknown Distributions” to emphasize the con-
nection of this problem with the summation problem of surface charges which is
that of the field of known distributions. In a boundary-value problem, the final
state of electrical equilibrium corresponds to some surface distribution on the con-
ductors, but one that is unknown a priori. The various methdds that apply to the
summation problem must apply here as well, in a suitably modified way. Thus; for
a given geometry, there occur the same solutlons‘of Laplace’s equatlon, the same
symmetry consndcratlons the same far field expansnons; eta Aniong the specxal

* The phrase “summation problem” is not mine; it is due to Sommerfeid. (A Sommerfeld,
Electrodynamws Academic Press, N.Y., 1952, p. 38.) ‘
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topics of this chapter is, of course, the method of images, which 1 discuss rather more

cursorily than in many other books. On the other hand, I have pointed out what is

often neglected, that the basic idea of the method (which is really nothing but

inspired guesswork) applies to homogeneous as well as inhomogeneous problems.

The classical method of superposition of separated solutions of Laplace’s equation

is, of course, also discussed. There is a section on the use of integral equations

which I have found to be pedagogically rewarding: the physics involved in setting
up these equations is enlightening, and they are almost the only practical way of
solving problems for other than the simplest geometrical shapes, It usually comes

as a relief to the student to be able to treat some other boundary than the sphere or*
cylinder. These equations must usually be solved numerically, of course, but they
are well adapted to compyter solution. At the worst, some of them can be crudely
solved by hand and even this is worth the effort (once). In a further effort to escape
the tyranny of the sphere and the cylinder, I discuss composite problems. These are |
problems in which the geometry is, so to speak, made up of a sum of separable

parts and, typically, they are problems involving more than one sphere, a sphere
and a cylinder, a cylinder and a half-plane, etc.

Chapter 5 treats the general theory of boundary-value problems involving
Laplace’s equation, i.c., the Dirichiet and Neumann problems. This entails, of
course, a discussion of Green’s theorem which I have deliberately not introduced ’
until this time, although there is logic enough in discussing it earlier. But I have
found that although readers follow the mathematical derivation of Green’s theorem
easily enough, they are not so quick to understand its real nature, and when it is
useful. In particular, if it is introduced before the discussion of boundary-value
problems with conductors, they somehow feel that Green’s theorem should be-
useful in solving them, which it is not.

Chapter 6 treats dielectrics, and here I break with the usual textbook treatments
which I think poorly of, in general. Where they are not vague, they tend to be un-
sound. One exception to this is in the book by Purcell (B); anyone who is familiar
with it will see resemblances here to his discussion and may infer correctly that I am
indebted to it in several ways. Not the least of these ways has been the reassurance.
that someone else thinks poorly of many of the standardiged treatments.

The problem of dielectrics is, in effect, the problem of calculating average
internal fields of dipole distributions. It is, in large part, a problem in statistical
mechanics but there is no satisfactory general solution that derives the macroscopic
properties from space and time averages of the microscopic ones. Any theory must
then be essentially postulatory. Fhe postulate I make involves the field E,, of the
equivalent surface and volume charges that correctly yield the external field of
dielectric matter; it relates E,, to the mean polarization and applied field. Although
the postulate is labeled explicitly as such, I have tried to make clear the rationale for.
it and have adduced experimental evidencs about dielectric-filled capacitors to
support it. Finally, and perhaps most importantly, I show that the discussion of
dielectrics that is based on this hypothesis is precisély equivalent to the usual



viii Preface

formalism involving the vector D.

This work on dielectrics temporanlyg]oses out electrostatics. The next natural
subjects are perhaps force and energy in the electrostatic field. I have deferred these,
however, until magnetostatics has been discussed, and have then discussed force
and energy side by side for both electric and magnetic fields. In this way, liopefully,
one learns both from the similarities and from the differences.

Chapters 7, 8, and 9 comprise a discussion of the magnetostatic field along lines
which parallel, insofar as possible, those for the electrostatic field. Thus, in Chap-
ter 7, Ampére’s law for the force between currents is stated, the split is made into a
field B produced by one current which then acts on the other, and from the definition
of B so obtained, its divergence and curl are calculated. I have found it sounder
pedagogically to proceed in this way, i.c., to calculate the properties of the field
directly from its definition rather than to do this by first mtroducmg auxiliary
potentials.

Chapter 8 comprises the second summation problem, that of calculating the
field of an arbitrary stationary current distribution. Although many books use the
vector potential as the major tool for this problem, the magnetic scalar one is
almost always superior in practice, and I have treated it in some detail. The vector
potentjal comes into its own only for time-varying fields. There are few cases in
magnetostatics where it is easier, or even as easy, to calculate the three components
of the vector potential than it is to do the single integration that yields the scalar
potential. .

" After the summation problem for currents, the parallel with the electrostatic
field breaks down. There is no magnetic analog of the electrostatic boundary-value
problems with sonductors since there are, of course, no conductors of magnetism.
But there are magnetic materials which are the analogs of dielectrics, and with
analogous problems, and these are the subject of Chapter 9. Once again, one must
cope with violéntly fluctuating internal fields and here I have followed the natural
course of patterning the discussion on that of dielectrics. An average internal
. macroscopic field B,; is defined by equivalent surface currents and a postulate is

--smade that relates the mean magnetization M to B,, and to the applied field. It is
then shown that the postulational approach is equivalent to the usual theory |
involving the vector Fh

The last chapter in statics is entitled **Force and Energy in Static Flelds ” T have
chosen to treat the electrostatic and magnetostatic cases in this one chaper, to learn
from their similarities and dissimilarities. One disadvantage is that one must, in
setting up the expression for magnetic field energy, simply quote some results that
will be derived later from Faraday’s induction law. This seems, however, a small -
price topay for the economy of treatment that results by treating the electric and
- magnetic case together.

The second part of this book, starting with Chapter 11, treats the time-varying
electromagnetic field. The pattern of the discussion follows these for the static
electric and static magnetic fi¢lds. First, the differential equations of the fields—in
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this case the Maxwell equations-—are presented. The fields are then related to the -
retarded potentials, which is to say, integral expressions over the currents. The
summation problem for these potentials is discussed and only then are boundary-*
value problems considered. Finally, the most difficult subject, that of fields inside
matter, is treated in general, and dielectrics are discussed in particular.

Chapter by ghapter, then, Chapter 11 states Maxwell’s equations, following the
introduction of the displacement current as the postulate that it really is. The dis-
placement current is sometimes derived by requiring that the continuity equation
be satisfied between the plates of a condenser, but this derivation merely camou-
- flages the essentially postulatory nature of the current. The chapter is quite con-

ventional in the main, except that I have spent more than the usual time on the
question of conservation laws. ' )
Chapter 12 treats the relation of the special theory of relativity to electro-
dynamics. In an effort to stay withiq reasonable bounds and yet keep everything
of interest, I have foregone a common approach which starts from the historical
_experiments (Michelson—-Morley, etc.), /ahd have preferred to spend the time and -
space gained to discuss concepts at the base of the theory, such as absolute time,
inertial frames, the nature of a vector, etc., which are perhaps not examined in
enough detail in general. . '

Chapter 13 on time-harmonic currents is the third summation problen: in the:
book and, as such, it can lean to a degree on the previous two, although it is, of
course, much more complicated in detail. ,

Chapter 14 on the fields of point charges in motion is, in effect, also a sum-
mation problem. I had originally thought of calling this chapter the “Summation .
Problem for Point Currents” to emphasize this fact. But the point nature of the
current makes this kind of summation problem different enough from the previous
ones that 3uch a title is perhaps somewhat Jabored. I have, however, tried to empha-
size the similarity of the approximations necessary to evaluate the fields of point
currents to those for the time-harmonic case. The explicit form of the Lienard—
Wiechert fields is perhaps somewhat deceiving. They do not.constitute the answer
to a problem but are, in effect, the problem itself since, in any particular case,
approximations must be derived for the retarded time in terms of the present time.
These approximations, low velocity, multipole, etc., are eésentially the same as those
made for the time-harmonic case. ' R -

Chapter 15 is on time-harmonic boundary-value problems with petfect con-
ductors. I'have chosen to study this idealized case first before discussing the physics
of imperfect conductors. There are enough new concepts even in the idealized case .
—modes, guide wavelengths, cutoff frequencies, etc.—that still other.concepts of
skin depth and field penetration are best deferred. Important time-harmonic
boundary problems are those of diffraction. I have tried to emphasize the approxi-
mate nature of the usual diffraction theory of physical optics and at least outline
one rigorous solution of a diffraction problem; this is the problem of diffraction by
a perfectly conducting half-plane first solved by Sommerfeld but presented here in
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a version due to Clemmow. Too frequently, the Kirchhoff theory, i.e., the application
of Green’s theorem to the Helmholtz equation, leads to formulae that are repre-
sented as solutions of the diffraction problem or, at least, whose approximate nature
is not enough emphasized. The solution of diffraction problems, then, appears to

be an exercise in the evaluation of Fresnel or Fraunhofer integrals. This is, of

course, not the case. "y

Chapter -16 on fields in matter was difficult to witte. The question of the
behavior of time-varying fields inside matter has, of course, all the difficulties of
the two static cases and some of its own as well. It is usually presented for dielectrics
in terms of the unsatisfactory formalism involving D and the time-dependent
polarization vector, P. Having shown how these are superfluous for electrostatics,
I have tried to do the same for time-dependent fields in matter. I have, moreover,
tried to treat all kinds of matter on the same conceptual basis. The common
denominator has been to consider that-matter of whatever kind is an ensemble of

currents: damped currents for conductors; localized polarization currents for |

dielectrics, etc. The one postulate that iscommon to almost all classical models of

matter is then a generalized Ohm s law: at a point the current is proportional to

the field with a proportionality coristant I” which may becomplex. The consequences
of this postulate are reasonable for condiictors. But in dielectrics, the cuyrents are
localized at atomic sites whereas the field is ubiquitous so the postulated relation
can hold only in some average sense. One is led to basic difficulties involving the
difference between the average field in a volume and the effective field acting on'a
dipole. These are, of course, the same problems that face one in the theory of the
static dielectric constant. T have tried to raise these problems to the surface and,
without solving theﬁ\ to give, by means of various one-dimensional and other
models, some idea of the physics that is involved in them. ,
With the properties of matter elucidated, the last chapter discusses boundary
value and other problems associated with fields in matter, including reflection at a
- dielectric interface and surface waves.. I began to write a section on Cerenkov
. radiation for this chapter. Most of its characteristic features can be derived by using
~ the previously shown fact that time-harmonic waves propagate in matter with a
modified wave number. But actually to calculate the intensity of Cerenkov
radiatioh, one must also have an expression for the screening effect of the medium.
This effect is sometimes expressed by saying that the medium is like free space except
that the velocnty cis replaced by c/n, where nis the dielectric constant, and a charge ¢
is replaced by the effective value e/n. But the only way known to me of calculating
this last result is by using the formal Maxwell equations in terms of D and H and the
- formal constitutive relations. As the last paragraph suggests, I am not convinced of
the accuracy of this standard formal theery and am convinced of its ambiguity.
Moreover, having done without D and H’throughout the rest of the book, I thought
it just as welt to do without them altogether, at the cost of havmg to ask the reader
to look up the Cerenkov effect elsewhere:.
A word about the references. They are meant to supplement the text, but also

i
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to be randomly stimulating. 1 have tried to include some recent journal articles
even in the earlier chapters, not with the intent of reviewing the literature com-
pletely, but rather of showing by a few essentially arbitrary references that even the
older parts of electromagnetic theory are far from closed books to research,

I am indebted to many people for help of one kind or another in the making of
this book. Iam especially grateful to Dr. John Jasperse, who taught a course based
on preliminary notes for the book, and whose advice helped shape large outlines
and clarify small details. I have also profited from the comments of Dr. Ronald
Newburgh on Chapter 12, and from the errors brought to my atténtion by Mr. Carl
Holmstrom, who read through the whole manuscript. Finally, I owe'a considerable
debt to Mrs. Connie Friedman and Mrs. Donna Dickinson, whose technical typing
skill and ability at deciphering were invaluable in producing the typescript of the
bulk of the book. _

Despite this help, errors and obscurities undoubtedly remain. I would be made
grateful, if not happy, by anyone who brings them to my attention at the address
below. »

Box 898 o ‘ LE.
Wellfleet, Mass., 02667 :
December 1971



PREFATORY NOTES

" In this book, references are cited in three different ways. First, the bibliography at
the end of the book lists references which are of interest for more than-one chapter;
. these are referred to in the text by citing the author’s name, followed by a B (for
bibliography) in parentheses. For example: Whittaker (B). Second, the references
~ at the end of a chapter, that are primarily of interest in the chapter itself, are cited
by the author’s name plus an R in parentheses: Kennedy (R). Finally, there are
ordinary footnotes indicated by standard footnote symbols.

The units.used in this book are cgs (Gaussian).

xvii
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1
CONCEPTS OF A FIELD THEORY

This is a book on the electromagnetic field, one of the many examples of fields that
are important in physics and natural science. In the words of Morse and Feshbach
(B), ““Practically all of modern physics deals with fields: potential fields, probability
fields, electromagnetic fields, tensor fields, and spinor fields.” Since the concept of
field is applied so widely, it is perhaps natural that'it has taken on somewhat dif-
ferent contexts with, of course, an underlying common denominator. In this first
brief chapter, we shall try to analyze the concept and its variants and so highlight
the essential aspects of the electromagnetic field.

One mathematical common denominator is easy to isolate. Mathematically,
a field 1s a function, or a set of functions considered as an entity, of the coordinates
of a point in space (and possibly of time). For example, if the temperature is defined
at every point in some volume, we say there is a scalar temperature field throughout
that volume. If,ina movingfluid, the three vector components of velocity are known
as a function of position in the fluid, they constitute as a whole a vector velocity field.
In the theory of elasticity, the relative vector displacements of points of an elastic
solid from their unstrained positions are described in terms of a double vectorial or,
as it is more usually called, a tensor field. In modern physics, the Schrdﬁmger
probability amplitude ¥ or the generalized Dirtac spinor amplitudes are examples
of fields.

" It is worth noting that in this above list, there are really two kinds of fields. The
first kind, exemplified by the temperature or velocity fields, is an idealization that is
really defined only in a certain approximation of coarseness or fineness. For
example, the velocnty field of hydrodynamics is meamngful only in an average or
continuum approximation in which the atomic and grainy structure of the fluid is
not considered. This point is discussed in some detail in Morse and Feshbach (B)
and we shall not elaborate on it here. By contrast, the Schrédinger or Dirac fields
are not approximations to an underlying discontinuous physical model but must
be assumed to exist no matter how finely space is divided.

To describe the evolution of the electromagnetic field concept, we recal.l some
history that begins with Newton (1642-1726). One of the great laws of physics is
Newton’s universal law of gravitation. This law embodies the concept of action at a
distance, according to which gravitational masses exert the forces they do on each
other by virtue of their positions in space, the intervening space playing no active
role. This is meant to contrast with forces which work via contiguous action whereby

-1



2 Concepts of a field theory

two masses at a distance exert forces which are transmitted l?y the intervening
medium. Forexample, if several bithard balls are in contact in a’frow on a tableand
the first one is struck, the last one will move. Thus, the one billiard ball exerts a
force on the other distant one. but by a mechanism which involves successive
actions of the intermediate balls, the onc moving the next, moving the next, etc.
The concept of contiguous action is then quite different from that of action at a
distance where no intermediate mechanism or medium is considered.

The work of Newton is relevant in a second way. His laws of the motion of
point particles and rigid bodies paved the way for the development of the continuurn
mechanics of fluids and later of elastic bodies. Some tentative beginnings on the
subject-of fluid flow were made by Newton himself, but the real groundwork was
later laid by John Bernoulli (1667-1748) and Euler (1767-1783). They bypassed
the problem of the actual microscopic structure of fluids by adopting a continuum
model and then applied Newton's laws of point mechanics to small elements of the
continuum. The same idea was later applied to elastic solids, and the vibrations of
these solids was discussed by applying Newton’s laws to a small element of the
solid, assuming that the forces acting on it were the stresses due to the rest of the
solid, plus any external forces. Hydrodynamics was therefore formulated in terms
of the velocity and acceleration of the moving fluid at every point, i.c., in terms of
velocity and acceleration vector fields. The theory of elastic solids was similarly-
formulated in terms of stress and strain tensorial fields. _

So much for mechanics; we turn now to electromagnetism. A basic law of
electrostatics is Coulomb’s law for the force between two charged particles. Except
for the fact that the electric force can be either attractive or repulsive, whereas the
gravitational force is always attractive, this law is obviously similar to Newton’s
law of gravitation. It was then considered from the time of its discovery as an
example of action at a distance, in which two charges act on each other in a way
that has nothing to do with the intervening mediuin. But this view began to be
questioned, at least in the mind of Faraday (1791-1867), by his work on dielectric
polarization. This phenomenon led him to attribute more and more importance
to-the intervening medium. We cannot go into the details of Faraday’s results and
reasoning but, for illustration, shall concentrate on one of his findings. This has to
do with the effect of insulators or dielectrics on the capacitance of condensers. Con-
sider a parallel-plate capacitor with air between its plates it has a certain capaci-
tance. If the air is replaced by a dielectric medium, the capacitance will be increased.
Faraday viewed the phenomenon of enhanced capacitance as somehow due to the
fact that the electric force generated by the charges on the plates was weakened by
the dielectric medium. But if changing the medium that intervened between the
charges changed the force, then somehow the forces must depend on, or be trans-
mitted by, the medium. As a corollary of this view, Faraday considéred that the
essential feature of the interaction between charged particles was the lines of force
that carried the “‘stresses’ of the medium from one charge to another. These lines
of force4hat extend from charge to charge through the medium were considered -



