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Preface

Through several centuries there has been a lively interaction between
mathematics and mechanics. On the one side, mechanics has used mathemat-
ics to formulate the basic laws and to apply them to a host of problems
that call for the quantitative prediction of the consequences of some action.
On the other side, the needs of mechanics have stimulated the development
of mathematical concepts. Differential calculus grew out of the needs of
Newtonian dynamics; vector algebra was developed as a means to describe
force systems; vector analysis, to study velocity fields and force fields; and
the calculus of variations has evolved from the energy principles of mechan-
ics. . '

In recent times the theory of tensors has attracted the attention of the
mechanics people. Its very name indicates its origin in the theory of elasticity.
For a long time little use has been made of it in this area, but in the last
decade its usefulness in the mechanics of continuous media has been widely
recognized. While the undergraduate textbook literature in this country
was becoming ‘‘vectorized” (lagging almost half a century behind the
development in Europe), books dealing with various aspects of continuum
mechanics took to tensors like fish to water. Since many authors were not
sure whether their readers were sufficiently familiar with tensors, they either
added a chapter on tensors or wrote a separate book on the subject. Tensor
analysis has undergone notable changes in this process, especially in notations
and nomenclature, but also in a shift of emphasis and in the establishment of
a cross connection to the Gibbs type of vector analysis (the * boldface
vectors ™).

Many of the recent books on continuum mechanics are only “ tensorized ”’
to the extent that they use cartesian tensor notation as a convenient
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shorthand for writing equations. This is a rather harmless use of tensors.
The general, noncartesian tensor is a much sharper thinking tool and, like
other sharp tools, can be very beneficial and very dangerous, depending on
how it is used. Much nonsense can be hidden behind a cloud of tensor
symbols and much light can be shed upon a difficult subject. The more
thorohghly the new generation of engineers learns to understand and to use
tensors, the more useful they will be. , :

This book has been written with the intent to promote such understanding.
It has grown out of a graduate course that teaches tensor analysis against the
background of its application in mechanics. As soon as each mathematical
toncept has been developed, it is interpreted in mechanical terms and its
use in continuum mechanics is shown. Thus, chapters on mathematics and
on mechanics alternate, and it is hoped that this will bring lofty theory down
to earth and help the engineer to understand the creations of abstract thinking
in terms of familiar objects.

Mastery of a mathematical tool cannot be acquired by just reading about
it—it needs practice. In order that the reader may get started on his way to
practice, problems have been attached to most chapters. The reader is
encouraged to solve them and then to proceed further, and to apply what he
has learned to his own problems. This is what the author did when, several
decades ago, he was first confronted with the need of penetrating the thicket
of tensor books of that era.

The author wishes to express his thanks to Dr. William Prager for critically
reading the manuscript, and to Dr. Tsuneyoshi Nakamura, who persuaded
him to give a series of lectures at Kyoto University. The preparation of these
lectures on general shell theory gave the final push toward starting work on

this book.

Stanford, California W. F.
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CHAPTER 1

Vectors and Tensors

IT IS ASSUMED THAT the reader is familiar with the representation of
vectors by arrows, with their addition and their resolution into components,
i.e. with the vector parallelogram and its extension to three dimensions. We
also assume familiarity with the dot product and later (p. 36) with the cross
product. Vectors subjected to this special kind of algebra will be called Gibbs
type vectors and will be denoted by boldface letters.

In this and the following sections the reader will learn a completely different
means of describing the same physical quantities, called tensor algebra.
Each of the two competing formulations has its advantages arid its drawbacks.
The Gibbs form of vector algebra is independent of a coordinate system,
appeals strongly to visualization and leads easily into graphical methods,
while tensor algebra is tied to coordinates, is abstract and very formal. This
puts the tensor formulation of physical problems at a clear disadvantage as
long as one deals with simple objects, but makes it a powerful tool in situa-
tions too complicated to permit visualization. The Gibbs formalism can
be extended to physical quantities more complicated than a vector (moments
of inertia, stress, strain), but this extension is rather cumbersome and rarely
used. On the other hand, in tensor algebra the vector appears as a special
case of a more general concept, which includes stress and inertid tensors but
is easily extended beyond them.

1.1. Dot Product, Vector Components

In a cartesian coordmate system x, y, z (Figure 1.1) we define a reference
frame of unit vectors i, i, i, along the coordinate axes and with their help
a force vector
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P=Pi, +Pji, +Pi, (1.1a)
and a displacement vector
=i+ ud, +ud;. (1.1b)

These formulas include the well-known definition of the addition of vectors
by the parallelogram rule.

In mechanics the work W done by the force P during a displacement u
is defined as the product of the absolute values P and u of the two vectors
and of the cosine of the angle B between them:

W = Pu cos p.

This may be interpreted as the product of the force and the projection of u
on the direction of P or as the product of the displacement and the projection
of the force on u. Itis commonly written as the dot product of the two vectors:

W=P-u=u-P=Pucos'f. (1.2)

This equation represents the definition of the dot product and may be
applied to any two vectors. Since the projection of a vector u =v + w on
the direction of P is equal to the sum of the projections of v and w, it is
evident that the dot product has the distributive property:

P-(v+wW)=P'v+P-w.

When any one of the unit vectors i, i,, i, is dot-multiplied with itself, the
angle f of (1.2) is zero, hence

= \

Pﬂ.'il

FIGURE 1.1  Vectors in cartesian coordinates.
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If, on the other hand, two different unit vectors are multiplied with each
other, they are at right angles and cos = 0, hence

Ll =i i, =i i, =0.
These relations may be combined into avsingle one:

i * iy = Opnys mn=x,y,z (1.3)
if we introduce the Kronecker delta, §,,, by the equations

Sm=1 if m=n, :
Sm=0 if men 4

We write the dot product of the right-hand sides of (1.1a,b):
Pa= (Pxix +Pyiy +Pziz) : (uzjx +uyiy +uziz)-

When we multiply the two sums term by term, we encounter all the possible
combinations of m and # in (1.3). Because of (1.4), only three of the nine
products survive and we have

P-u=P.u, +Pyu,+Pu, (1.5)

a well-known formula of elementary vector algebra.

We try now to repeat this line of thought in a skew coordinate system.
To simplify the demonstration, we restrict ourselves to two dimensions
(Figure 1.2). We write the work, i.e. the dot product, first as the work done
by P,i, plus that done by P,i,:

P-u=W=P(u, + u,cos a) + P,(u, + u, cos a) (1.6a)

FiGURE 1.2 Vectors in a skew rectilinear coordinate system.
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and then as the work done by P if the displacements u,i, and u,i, occur’
subsequently:

P-u=W=u/ (P, + P,cos a) + u,(P, + P, cos a). (1.6b)
Each of these equations can be brought into the form
P-u=P.u +Pyu,+ (P.u,+ P,u,)cos a.

This has yielded a result, but it has not increased our insight. It is better
to leave equations (1.6) as they stand and to realize that we must deal with
two different sets of components of each vector: (i) the usual ones, like
P,, P,, which are obtained when P is made the diagonal of a parallelogram
whose sides are parallel to the coordinate axes, and (ii) the components
(P, + P,cosa), (P,+ P,cosa), which are the normal projections of P
on the axes x and y.

Before we embark upon a closer inspection of these components we intro-
duce the notation which is fundamental for tensor theory and which will be
used from now on in thisbook. Instead of components P, , P, we write P!, P?,
using superscripts, and call these quantities the contravariant components
of the vector P. For the second set of components we write

P, + P,cosa =P,
Py,+ P, cosa=P,
and call these the covariant components of P. The quantities P" are vector

components in the familiar sense of the word. When we multiply them with

the unit vectors i, = i; and i, = i, and add the products, we obtain the vector
P:

P =Pl + P%,=Y Pri,. (1.7a)

The covariant components can be added in a similar manner if we interpret
them as shown in Figure 1.3. This figure contains, besides the axes 1 and 2,
two other axes, which are at right angles to them. On these we project P

by the usual parallelogram construction to obtain components of the
magnitude

P,‘+P,coscz= P,
sin a sin a

and

P,+P,cosa= p,
sin a sina’

When we interpret them as vectors, they add up to form P. We write them
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E—

Py+ P, cos a

SN a /
/
/

FIGuRe 1.3  Covariant and contravariant components of a vector.

using reference vectors i', i2, which are not unit vectors, but have the absolute
value 1/sin «. Then we can write

P=P,i' + P,it=Y P, i" (1.7b)

as a second component representation of the vector P.

The idea explained here in two dimensions imay easily be extended to three
(and even more) dimensions. We choose an arbitrary set of three unit
vectors iy, iy, i3, called a reference frame. Then we resolve an arbitrary
vector v in the usual way into components along the directions of these unit
vectors and write them as v"i,, n =1, 2, 3. The vector v is then the sum of
these contravariant components

V= Z v"i,. (1.8)
Next, we choose vectors i, which satisfy the condition
i"-i,=06r, (1.9)

where J7 is another way of writing the Kronecker symbol O defined in
(1.4). Each of the vectors i” defined by (1.9) is at right angles to the vectors
i, with n# m and of such magnitude that its absolute value [i"[ is the
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reciprocal of cos (i,, i”). We may now resolve v in components in the direc-
tions of the vectors i” and write

v=Y v,;,i”. (1.10)

Since, in general, |i®|# 1, the covariant components v,, are not simply
the absolute values of the component vectors v, i™.

When we now consider any two vectors u and v, we may resolve one of
them into contravariant components according to (1.8) and the other one
into covariant ones according to (1.10):

u=3) i, v=) y,i"
The dot product is then
uv=Y Y uv,i, i"=Y Y u'v, o™ (1.11)

The double sum contains all possible combinations of n and m, nine terms
all together. However, only in the three terms for which n = m, does the
Kronecker symbol 87 = 1, while for the other six it equals zero. We may,
therefore, write .

u-v=Y u", =u'v, + u?, + udv,, (1.12)
n

which shows that also in skew rectilinear coordinates the formula for the dot
product is as simple as (1.5), if for one vector we use the contravariant com-
ponents and for the other the covariant ones.

We may now do the final step to build up the notation to be used with
vectors and tensors. It will turn out that we always have to deal with sums
over some index which appears twice in each term, once as a superscript in a
contravariant component and once as a subscript indicating a covariant
component. We shall in all these cases omit the summation sign and use the

SUMMATION CONVENTION: Whenever the same Latin letter (say #)
appears in a product once as a subscript and once as a superscript, it is
understood that this means a sum of all terms of this kind (i.e. for n=1,
2,3).

With this convention we rewrite (1.12) as
u-v=u", (1.13)
and (1.11) as
u-v=u",i, i" = u"v, ", ' (1.14)

implying in this case a summation over all # and over all m.
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Since in the result of such a summation the summation index no longer
appears, it does not matter which letter we use for it. Such an index is called
a dummy index, and when necessary, we may change the letter used for it from
one equation to the next or from the left-hand side to the right-hand side of
the same equation. It will often be necessary to do so because we must avoid
making the summation convention unclear by using the same letter for two
sums.

1.2. Base Vectors, Metric Tensor

In (1.7a) we used unit vectors i, as a base for defining the contravariant
compenents, but in (1.7b) we found it necessary to choose vectors i", which do
not have unit magnitude. We broaden our experience by considering a
vector in a polar coordinate system, Figure 1.4. As a specimen vector we
choose a line element ds. Defining unit vectors iy, i, in the direction of
increasing coordinates, we can write

ds =i, dr + i,r db. (1.15)

FIGURE 1.4  Base vectors in polar coordinates.

Here, as everywhere, we want to consider the differentials of the coordinates
as the contravariant components of the line element vector ds:

dr =dx',  df =dx>

It is then necessary that, instead of unit vectors, we use the coefficients of
these differentials in (1.15) as base vectors:

g =i, g =i
We call them the contravariant base vectors and rewrite (1.15) in the form

ds =g, dx\ + g, dx* = g, dx'. (1.16)
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While g, is still a unit vector, g, has the absolute value r and is not even
dimensionless, as the unit vectors are. We see also that, different from
rectilinear coordinates, these base vectors are not constant, but depend on
the coordinates of the point A4, for which they have been defined. The
directions of g, and g, depend on 6 and the magnitude of g, depends on r.

We generalize (1.16) by extending it to an arbitrary (possibly curvilinear)
three-dimensional coordinate system x* (i = 1, 2, 3). Atany point 4 we choose
three vectors g; of such direction and magnitude that the line element vector

ds = g; dx'. (1.17) -

Now consider the position vector r leading from a fixed point O (possibly
the origin of the coordinates) to the point 4. The line element ds is the
increment of r connected with the transition to an adjacent point, ds = dr.
We can write this increment in the form

or | |
( = — d ',
dr F x

where again the summation convention is to be applied (accepting the super-
script in the denominator in lieu of the required subscript). Comparing this
expression with (1.17), we see that

or
g,-—é-x—,., (1.18)

We apply the base vectors g; defined by (L.17) or (1.18) to all vectors

associated with the point A. As an example, a force P acting at this point is
written as

P =g, P; (1.19)

any of the components P has the dimension of a force if the corresponding
g: is dimensionless [as g, in (1.16)] and otherwise has such a dimension that
its product with g; is a force.

A second set of base vectors g’ is defined by an equation similar to (1.9):
g g =4l o (1.20)

chh vector g’ is at right angles to all vectors g; for which i # j and has such
magnitude (and such a dimension) that its dot product with g; equals unity.
This defines completely the vectors g’, which are called the contravariant

base vectors. They may be used to define covariant components P; of any
vector P:

P=gp;. .21
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When we apply the definitions (1.19) and (1.21) to any ﬁwo vectors u and
v, we may write their dot product as

u-v=u'g‘v;g =g g =u'v6f = u'y, (1.22a)
since
v;6] =,
and in the alternate form
u-v=uyg - g = u v’} = uo' (1.22b)

.Every vector can be resolved into covariant or into contravariant compo-
nents. When we 'try to write the covariant base vector g; in contravariant
components, we have

8:1=8 "1+g0+g-0,

i.e. a triviality. No matter what the actual magnitude of g, is, it always has
the components (1, 0, 0) in the system of base vectors g;. However, when we
resolve a covariant base vector into covariant components, we are led to a set
of new, important quantities:

8 =8y g. (1.23a)
The entity of the nine quantities g,; thus defined is called the metric tensor
and the individual g;; are its covariant components. The meaning which
stands behind this terminology will become clear when we study the tensor
concept (see p. 15).
In analogy to.(1.23a), we may resolve g’ into contravariant components,
g =g'; (1.23b)
and thus define contravariant components of the metric tensor.
Let us now consider dot products of base vectors of the same set:
gi'g,i:gikgk'gj‘—‘gih‘sf':Qu (1.24a)
or
g8 =g 2 =g"5=g" (1.24b)
Since the two factors in a dot product may be interchanged, it follows that
' 9i;=95, ¢'=g" (1.25)
Equations (1.24) may be used as the definitions of g, ; and g*. If this is done,

(1.23) must be derived from them. This can be done in the following way:
Tentatively, let

g =a;g



