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PREFACE

This volume iz a textbook of College Physics based on Sears’ three-
volume work Princtples of Physics. The material covered includes Me-
chanics, Heat, Sound, Electricity and Magnetism, Optics, and Atomic
Physics. Those parts of Sears’ original work that came within the scope
of intermediate physics and which were therefore treated with the aid of
ealeculus have been either removed or rewritten in simpler form. As a
result, this text comsists exclusively of material suitable for first-year col-
iege students whose mathematical preparation goes no further than algebra
and the elements of trigonometry. The total number of topics has also
been reduced se that the complete text may be taught in two semesters.

The emphasis is on physical principles. Historical background and
practical applications have been given a place of ‘secondary importance.

Three systems of units are used: the English gravitational system be-
cause it is the one used in engineering work throughout the country; the
cgs system becalse some familiarity with it is essential for any intelligent
reading of the literature of physics; and the mks system because of its
increasing use in electricity and magnetism, as well as because it seems
destined eventually to supplant the cgs system.

The symbols and terminology, with few exceptions, are those recom-
mended by the Committee on Letter Symbols and Abbreviations of the
American Associatior of Physics Teachers as listed in the American
Standard, ASA-Z10, published in 1947. '

The authors acknowledge with gratitude the cooperation of the pub-
lishers.

Francis W. SEARs
Marg W. ZEMANSKY
November, 1947



ERRATA

Page
41 TFig. 3-15(b). Change “30 Ib” to “40 Ib.”
44 TFig. 3-19. Change the 100-Ib force at the left to ‘200 Ib.”
125 Tig. 8-1. The four velocity vectors should be lettered v, 1o, v. and .
.
170 Eq.-(10-5! should read “I = Zwmr?”
174 Left side of boxed equation should read “angular momentum of a
particle.”
175 TFig. 10-7(»). Change mg to wy'.

) 10N/ 1\
179 Line 4 should read: =442 3,)(5) = 4.16 slug-fi*

10

Line 5 should read: Iy =4 + 2 (12

)(3): = 9.63 slug-{t*.
Line 7. Change 2.27 to 2.31r.
Line 19 Change 2 slug-ft* to 20 slug-ft2.

230 Fig. 14-2. Change “I" to “l,."

272 Referenee in last line should be to Chapter 19.

Answers iv Problems

Chap. 7, problem 3: Should be 730 ft-lb,

Chap. 7, problem 9: Should be 1,887,000 {t-Ib.

Chap. 12, problem: 1: Sbould be (a) F9470 cm/sec?; 377 cm/sec.
(b) —5680 em/sec?; 301 em/sec.
(e¢) 0.0368 sec.



CHAPTER
MECHANICS
1. Composition and Resolution of Vectors .
- 2, Statics T
3. Moments—Center of Gravity
4. Rectilinear Motion .
h. Newton’s Secend Law

10.

11,

12
13.
14

CONTENTS

Motion of Projectile
‘Work and Energy
Jmpulse and Momentum

. Circular Motion .

Rotation
Elasticity .
Harmonic Motion
Hydrostatics

Hyvdrodynamics and Viscosity .

HEAT

15.
16.
17.
18.
19.
20.

Temperature—Expansion .
Quantity of Heat

Transfer of Heat. . . .
The First Law of “I'bermodynamices
Thermal Properties of Matter .

The Second Law of Thermodynamics

SOUND

21.
22.
23.

Waye Motion .
Vibrating Bodies .

Acoustical Phenomena

Pace

14
30
47
6o
91
101
125
138
168
189

218
229

336
347
362



CHAPTER 1
COMPOSITION AND RESOLUTION OF VECTORS

1-1 Force. Mechanics is the branch of physics and engineoring which
deals with the interrelations of force, matter, and motion. We shall begiu
with a study of forces. The term force. as used in mechanics, refers to
what is known iu everyday language as a push or a pull. We can exert a
force on a body by muscular effort; a stretched gpring exerts forces on the
bodies to which its ends are attached; compressed air exerts a force on the
walls of its container; a locomotive exerts a force on the train which it is
drawing. In all of these instances the body exerting the force is in contact
with the body on which the force is exerted, and forces of this sort are
known as conlaci forces. There are also forces which act through empty
space without contact, and ure called action-at-a-distance forces. The force
of gravitational attraction exerted on a body by the earth, and known as
the weight of the body, is the most important of these for our present study.
Electrical and magnetie forces are algo action-at-a-distance forces. but we
ghall ptu be concerned with them for the present.

Il forces fall into one or the other of these two classes, a fact that will
be found useful later when deciding just what forces are acting on a given
body. Tt is only necessary to observe what bodies are in contact with the
one under consideration. The only forces an the body are then those
excrted by the bodies in contact with it, together with the gravitational
* force or the weight of the Lody. )

Those forces acting on a given body which are exerted by other bodies
are referred to as exfernal forces. Forces exerted on one part of a body by
other paits of the same body are called infe. nal forces.

1-2 Units and standards. Tke early Greck philosopfers confined their
- achivities largely to speculations about Nature. and to attempts to recon-
- cile the observed hehaviour of bodies with theological doctrines. What
has been called the scientific method began to appear-in the time of Galileo
Galilei (1564-1642). Galileo’s studies of the laws of freely falling bodi
were made not in an attempt to explain why bodies fell toward the earth,
but rather to determine how far they foll in a given time. and how fast they
moved. Physics as it exists today has been called the science of measure-
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ment, and the importance of quantitative knowledge and reasoning has
been expressed by Lerd Kelvin (1824-1907) as follows. ‘9 often say that
when you can measure what you are speaking about, and express it in
numbers, you know sometning about it; but when you cannot express it
in numbers, your knowledge is of a2 meagre and unsutisractery kind, it may
be the beginning of knowledge but you have searcely, in vour thoughts.
advanced to the stage of Science whatever the matter.may-be.”

The first step in the measurement of a physical quantity consigts in
choosing a unit of that quantity. As the result of international eollabo-
ration over a long period, practically all of the units used in physics arc
now the same throughout the world. The second step i3 an experiment
that determines the ratio of the magnitude of the quantity to the magni-
tude of the unit. Thus, when we say that the length of a rod is 10 centi-
meters, we state that its length 1s teu times as great 2z the unit of length,
the contimeter,

1t is possible to simplify many of the equations of physics by the proper
choice of units of physical quantities. Any set of units which is chosen so
that these gimplified equations can be used is cslled a system of units, We
shall use three such systems i this book They arve, first, the Fnglish
gravilaiional system; second, the meter-kilogram-second or mks system;
and third, the centimeter-gram-second or e¢gs system. The units of these
systems will be defined as the need for them arises.

Most of the fundamental units of physics are embodied in a physical
object called a standard. One of the functions of the National Bureau of
Standards in Washington, 1. C_, is to maintain in its vaults standards of
various quantities with which commercial and technical measuring instru-
ments can be compared for aceuracy.

1-3 The pound. The unit of force which we shall use for the present
is the English gravitational umt. the pound. Otker units will be discussed
in Chap. 5. This unit is embodied in a cylinder of platinum-iridium called
the standurd pound. The unit of toree is Jdefined as the weight of the
standard pound. That is, it is & force equal to the force of gravitational
atiraction which the earth exerts on the standard pound.  Since the carth’s
gravifational attraction for a given body varies slightly from one point to
another on the earth’s surface, it is further stipulated that the unit force
shall equal the weight of the standard pound af sea level and 45° lutitude.

In order that an nnknown force can be compared with the force unit
(and thereby measured) some m.casuruible effect produced by a force nust
be used. Oue common effeot of a force is 10 alter 1l dimensions or shape
of a budy on which the force.is exerted; another is to alter the state of
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motion of the hody. Both of these effects are used in the measurement -of
forcos. In this chapter we shall consider only the former; the intter will
be dizgeussed in Chayp. 5. '

The instiument: used to measure forces is the svring balance, which
consists of a coil spring enclosed in a case for protertion and carrying at
one end a pointer that moves over a scale. A force exerted on the balance
increases the length of the spring. The balance can the calibrated as
follows; The standard pound is first suspended from the balance and the
position of the pointer marked 1 b, Any number of duplicates of the
standard cun then be prepared by suspending each of them in turn from
the balance and removing er adding material until the index stands at
{ Ib. Then, when two, three, or more of these are suspended simultane-
ously from the balance, the force stretching it is 2 b, 3 1b, ete., and the
corrgsponding positions of the pointer van be labelled 2 Ib, 3 tb, ete.  This
procedure makes no assumptions about the elastic properties of the spring,
except that the force exerted on it is always the same when its index stands
at the same point. The calibrated balance can then be used t0 measure
any unknown force.

1-4 Giaphical representation of forces. Vectors. Suppose we are to
slide a box along the floor by pulling it with a string or pushing it with a
sbick, as in Fig. 1-1. That is, we are to slide it by exerting a force on it.
The point of view which we now
adopt 18 that the motion of the box &

s cauged not by the ovbjects which /Z» "

push or pull on it, but by the forees # \fo

which these exert. For concreteness N\

assume the muagnitude of the push |

or pull to.be 10 Ib.s It is clear that A S
simply to write “J0 Ib"™ on the dia-  pyg, 11, The box i puiled by the steiny
gram would not completely describe or pushed by the stick,

the foree, sinee it would not indicate

the direction in which the force was acting. One might write “10 ib, 30°
above horizontal to the right,” or “10 Ib, 45° below horizontal to the
right,” but all of the above information may be conveyed more briefly if
we adopt the con ention of representing a force by an arrow.  The length
of the arrow. to some chosen scale, indicates the size or magnitude of the
force, and the direction in.which the arrow points indicates the direction
of the torce. Thus Fig. 1-2 (in which a scale of ' in. = 1 1b Las been
chosen’ is the force disgram coerresponding to Fig. 1-1. (There are other
forees acting on the box, but these are not shown in the figure.)
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Fre. 1-2. 'The force diagram corresponding te Fig. 1-1.

Force is not the only physical quantity which requires the specification
of direction as well as magnitude. For example, the velocity of a plane is
not completely specified by stating that it is 300 miles per hour; we need
to know the direction also. The coneept of density, on the other hand,
has no direction associated with it. '

Quantities like force and velocity, which invelve: both magnitude and
direction, are called vector guantities. Those like density, which involve
magnitude only. are called scalurs. Any veetor quantity can be repre-
sented by an arrow, and this arrow is called a vector (or if a more specifie
statement is needed, a force vector or a velocity vector). We shall first
consider force vectors only, but the ideas.developed in desling with them
can be applied to any other vector quantity.

1-5 Components of a vector. Wken a box is pulled or pu:hed along
the floor by an inclined foree as in Fig. 1-1, it is clear that the effectiveness
of the force in moving the box along the floor depends upon the direction

_ in which the force acts. Everyone knows by experience that a given force

is more effective for moving the box the more nearly the direction of the
force approaches the horizontal. Tt is also clear that if the force is applied
at an angle, as in Fig. 1-1, it is producing another effect in addition to
moving the box ahead. That is, the pull of the string is in part tending
to lift the box off the floor, and the push of the stick is in part forcing the |
box down against the floor. We are thus led to the idea of the components.
of a force. that is, the effective vahres of a farce in directions other than
thai of the force itself.

The companent of a force in any direction can be found by a simple
giaphical method. Suppose we wish to know how much foree is avail-
able for sliding the box in Fig. 1- L it the applied force is & pull of 10 Ib
directed 30° above the horizgontai. Let the given force be represented by
the vector OA in Fig. 1-3, in the proper direction and to some convenient
scale. Line OX is the direction of the desgired eompenent. From point A,
drop a perpendicular to OX. intersecting it at B. The vector OB, to the
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same scale as that used for the givén vector; represents the component of
OA in the direction OX Measurements of the diagram show that if OA
represents a force of 10 Ib, then OB is about 8.71b. That is, the 10-lb
force at an angle of 30° above the horizontal has an effective value of ouly
about 8.7 Ib in producing forward motion.
The eomponent OB may also be computed as follaws Sinice O4B is
a right triangle it follows that
cos 30° = -gg .
0B = 04 cos 30°

The fengths OB and OA, however, are proportional to the magnitudes
of the forces they represent. Therefors the desired component OB, in
pounds equals the given force OA, in pounds, multiplied by the cosine of
the angle between OA and OB. The magnitude of OB is therefore

02 (Ib) = OA (b) X cos 30°
=10Ib X .866
= 8.66 lb.
This result agrees as well as could be expected with that obtained from
measurements of the diagram. The superiority of the trigonometric

methad i8 evident. however, since it does not depend for accuracy on the
‘gareful construction and measurement of a scale diagram.

4

] .

! /:'
i

i |
4' )

1

. e —

o
F;
Fia. 1-8  vector OB is the component Fig. 1-4. Fa: = F cos 0 is the
of vecter DA in the direction OX. X-component of F.

The line OX in Fig. 1-3 is called the X-axis, and the foregoing analysin
may be genemlized as follaws. If a force F makes an angle 0 with the
X-gxis (Fig. 1-4), ite component F, along the X-axis is

Fy= Fcos . ('-1)

It should be obvious that if the force F is at right angles to the axis,
its component along that axis is zero (sinece cos 90° = 0), and if the force
lies 2loug the axis, its companent 1s equal to the force itself (since cog 9o=1).
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The lifting component of an inclined force can be found as o Fig. 1-5.
Line OV, called the Y-axis, is constructed in a vertical direction threugh &
and a perpendicular dropped te this axis from the head of the arvow £,
Lvidently

F, = F cos ¢, (1-2)

where ¢ is the angle between /' and the Y-axis,

Frc. 1-5. Fy = Fcos¢ =Fgindis Fiz. 1-6.  Theforce ¥ inuv be replaced by
the }'-conmpounent of F, ite recrangular compouents f'z and F,

1t is also evident from Fig. 1-5 that
Fy = Fsinv. (1-3)

If F =10 1b and é = 30° then 3 = 60% and cos ¢ = sin ¢ = 0.50.
HMence F, = 5 1h.

Just as we may find the ccmpenent of a given force in any direction,

'sa may we find the component of any of its components, and so on. It
will be seen trom Fig. 1-6, however, thas F, has no componeot along the
Y-axis and ', has no component along the N-axis.  No further resolution
at the force into X- and Y-compenenis is therefore possible. Physically
this means that the two forces /', and K,, acting simultaneously, wuve
equivalent in all respeets to the original foree . Since the axes OX and
0Y sgre at right angles to one another, F, and F, are called the rectangidd
componrents ol the torce F. Any force may be replaced by iis reclangnlae
components. The tact that the {orce /7 hus beeu replaced by its companents
F. and Fy is indicated in Fig. 1-6 by erassing cut lightly the vector F.

The process of finding the compeoncuts of a vector is called the resciution
of the vector, and one speaks of resofring a given vector into its rectangular
components. .

An experiment to show that a force may be replaced by its rectungular .
components is iltustrated in Fig. 1-7 A smali ring, 1o which are attached
three cords, is placed ou a pin set in a vertical board. Two of the cords

~ pass over pullevs as shown. When weights of 8.66, 5, and 10 1b are



~¢

1-6] COMPUSITION OF FORCES

10 Ih
8.66G: 1
- Fic, 1-8. F: and Iy are the eony-
51h ponentsof £, purallel and perpendioular
Fre. 1-7, to the surface v1 the plane,

suspended from the cords, with the cord carrying the 10-1b weight making
an angle of 30° with the horizontal, il will be found that the pin can be
removed and that the rng will remain at rest under the conibined action
of the pulls in the tluee cords. This shows that the 10-lb force, at an
angle of 30° above the horizontal, is equivalent to a horizontal force of
8.66 1b ta the right and a vertical lorce of 5 1h npward, since the ring
can be held at rest by the applicatiom of two forces equal to these but
oppositely directed.

It 15 frequently nevedsary to find the components of a foree in other
than horizontal and vertical directions. Thus in Fig. 1-8, where a block
is being arawn up an inclined plane by the force F, it is desired to find the
components of this foree paraliel and perpendicuiar to the surface of the
plane. The X- and Y-axes are now drawn parallel and perpendieular to
this surface. and the same procedure followed ns belore.

1-6 Composition of forces. When a nuinber of forces are  imultane-
ously applied at a point, it 13 fornd that the same offect can always be
produced by u single furce having the proper magnitude and direction.
We wish to find this force, ealled the resultant, when the separate forces
are knowin. The nrocess is known as the composition of forees, and is
‘ evidently the converse problem to thut of resolving a given force into
) coniponents.  Let us begin by considering some simple cases.

(1Y T'wo forees at iight angles.
" Suppose that two forces of 10 [b and
5 b are applied simultancously at
the point O us in Iig. 1-9. To find
the resultant foree graphically, lay
off the given forces OP and J0Q 1o
scale, and draw horizontal and verti-
cal censtruction lines from P and @, Fre. 1-9.

ol 101 P
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intersecting at . The arrow drawn from 0 to 8 fepreseuts the rosul ant
of the given forces  [ts lengthb, 1o the same scale as that used for the
origina! forces, gives the maguoitude of the resultant, and the angle 6 gives
its direction. -

Since the length PS5 or 0Q represents 5 1b, and the length OF repre-
sents 10 ib, the magnitude of the resultant may be computed from the
right triangle OPS. Thus

08 = \OP + PS* = +/10° + 5 = (1.2 Ib.

The angle 7 may also be computed trom either its sine, cosine, or

tangent. Thus

J .
sin 0 = —— = 0.447.
ST 4

b= 2> - 0,603
§ cos ¥ = 11, - Y ’

[

(]

o

5
= 7— = 0.500.
tan 4 "o 0.500

Using any one of these values we find from tables of natural functions

4 = 26.5°.
We conclude, then, that a single force of 11 2 Ib, at an angle of 26.5°
above the horizontal, will produce the same effect as the two forces of
10 1b horizontally and 5 b vertieally. Notice that the resultant is not

the arithmetic sum of 5 1b and 10 Ib. That 1s the two forces are not
equivalent to a single foree of 15 1b.

0 o T
F1a. 1-10. Parallelogram method for Fra. i-i). Triangle method {or finding”™
finding the ra=ultant of two vectors, the resultant of two vectors.

(2) Two forces not at right angles. (a) Paralleiogram method. Iet
OP and OQ in Fig. 1-10 represent the forces whose resultant is desired.

‘Draw constiuction lines from P parallel to 0Q, and from Q parallel to OP,

- intersecting at 8. The arrow OS represents the resultant B in magnitude

and direction. Since OPSQ is a parallelogram, this method ig called the
parallelogram method. The magnitude aud direction of the resultant may
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be found by measureraent or may be computed from the triangle OPS with
the help of the sine and cosme laws.

Nore. Thediagonal QP is nat the resultant of the given forces.

(b) Triangle method. Draw one foree vector with its tail at the bead
of the other as in Fig. 1-11 (the construction may be started with either
vector), and complete the triangle. The closing side of the triangle, 0Q,
represents the reshitant. A comipricon of Figs. 1-11 and 1-10 will show
that the same resultant is obtained by either method:

R R Q
0 e ——————— T —— T
OF P ‘Q w P

Fio, 1-12. Veetor R is che resultaust of vectors P and Q.

(3) Special cose. Both forces in the sare line.  When both forces li»
in the same straight line the tnangle of kig. 1-11 flatiens out into a line
also. To be able 10 see all of the foree vecetors, it is customary to displace
them slightly as in Fig. 1-12. We then have Fig. 1-12(a) or 1-12(b),
depending tipon whether the two forces are in the same or opposite direc-
tions. Qnly in this case is the niagnitude of the resultant equal to the
sum (er ifference) of the magnitudes of the coinponents.

. B
D I
D R
0 7 2 - r D
A A \i\ A
F >a % ¢
{a} Q) B «©)

Fre. 1-18. Polygen method.

(4) More than two forces Polygon method When more than two
forces are to be combined, one may first find the resuitant of any two, then
combine this resultant with a third, and so on. The process is iliustrated
in Fig. 1-13, which-ghows the four forces 4, B, ¢ and D acting simul-
taneously. 2t the point O, In Fig. 1-13(b), forees 4 and B are first com-
bined by the tiiangle method giving # resultant E force E is ther comn-
bined by the same process with C giving a resultant F; tinally F snd D
are combmed 6o obtain the resultant E. Evidently the vectors E and F
need not have becu drawn—one need only draw the given vectors in
succesgion with the tail of each at the hese of the on preceding it, and
complete the polygon by a vector R from the tail of the first to the heae
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of the last vector. The order in wiich the vectors are drawn makes no
difference, as shown in Fig. 1-13(c)

Tt hac been assumed in the preceding discussion that all of the forces
lie in the same piane. Such forces are called co-planar, and, except in a
few instances, we shall consider only situations involving co-planar forces.

1-7 Composition of forces by rectangular resolution. While the poly-
gon method is a satisfactory graphical one fox finding the resultant of o
number of forees, it is awkward for computation because one must work,
in general, with oblique triangles. Therefore the usual method for finding

.the resultapt of a number of forces is tirst to resolve all of the forces into
their rectangular components along any convenient pair of axes; seeond,
to find the algebraic sum of all of the X- and all of the Y -components; and
third, combine these sums io obtain the final resultant. This process
makes it possible to work with righi triangles only, and i« called the melthod
of rectangular resolution. As an example, let us compute the resultant of
the four forces in Fig. 1-14, which are the sams as those in Fig. 1-13.

20 b o
L 20 sin 60°
o . I
§ =i 45 ) ~V
8 sv= 1206 B |
N T¥=12.96] , - !
. 25 =y |
20 co=x 667 8 ¢os 45 X =20 66
10
’ -
(a) l )] ()
Fic. 1-14.

The forces are shown in Fig. 1-14{h resolved into X~ and V-components.
The 25-1b and the 10-Ib forces are already along the axes snd need not
be resolved. It is eustomary to consider X-components which are direeted
toward the right as positive and those toward the left, negative.  Similariy,
Y-components in an upward direction are considered positive and those
downward, negative. This convention of signs is net always adhered to,
however. In general one chooses positive and negative directions so ag to
avuid minus signs if possible.

The X-component of the &-lb force is +8S cos 45° = +5.66 b, and iis
Vecomponent iz +8 sin 45° = +5.606 Ib.. The X-component of the 20-b
joree is —20 cos 60° = — 10 1, its Y-componeni iz +20 sin 60° = +173

b The algebraic sum of the X-compenentsis a foree of 25 + 5.66 — 10 =
-+20.60 1b toward the right. The algebraic sum of the Y-components

@

»
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is a force of 17.3 + 5.66 — 10 = --12.96 lb upward. The resultant is
equal to the square roovt of the sums of the squares of the resultant X-
and Y-components (Fig. 1-14(c)). The angle which it makes with the
X-axis can be found from its tangent. Thus

B = \/20.66" + 12.067 = 24.4 lb,

12.96 - :
o — = '127
tan & 2066 0627,
6 = 32.1°,

v /

While three separate diagrams are shown in Fig. 1-14 for clarity, in
practice one would carry out the entire construction in a single diagram.

The mathematical symbol for the algebraic sura of the X- or ¥Y-com-
ponents is X or Y. (T is the Greek letter sigina or S, meaning “the
sum of”.)  Hence one ean write in general .

R = V(ZX¥ ¥ (ZY)?,
zy
tan 8 = Sx% <

1-8 Vector difference. The resultant Of two vectors is zlso called
their vector sum, and the process of finding the resultant is called wvector
addition.  In many mstances, as when computmg accelerations or relative
velocities, it is necessary to subtract one vector from another or to find their
vector utfference. This 1s done as follows: if A und B are the vectors, shown
in Fig. i-15(a), the vector difference 4 — B can be written 4 + (—B),
that s, it is the vector sum of the vectois A snd —B. The negative of a
given vector haz the sume length as the given veetor but points in the

A

Fra, 1-15.
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appositc direction. Erther the parallelogram method, Fig. 1-15(b) or the
triangle methol, Fig 1-15(c), may then be employed to obtain the sum
oi Asad —B

Vector differences may aiso be found by tna method of rectangular
resolution. Fach vector is 1ssolved into ite X- and Y-components. The
differense between tho X -components is the X~component of the desired
vector diffarence; the difference between the ¥-components is the ¥-com-
ponent of the vector difference.



