[l ducation) KT EHHEEINEREMET @

Object Oriented Programming with C++
Fourth Edition

| cramgER;

(554hR)

E Balagurusamy %

. ATERFHhRHt

KE¥EUTENBFESELBM AT (R

Object Oriented Programming with C++

Fourth Edition

CHE B RIZFRIT

(58 4 hi)

B XRF R
A

AL

E Balagurusamy
Object Oriented Programming with C++, Fourth Edition
EISBN: 0-07-066907-4

Copyright © 2009 by The McGraw-Hill Companies, Inc.

Original language published by The McGraw-Hill Companies, Inc. All Rights reserved. No part of this
publication may be reproduced or distributed by any means, or stored in a database or retrieval system, without
the prior written permission of the publisher.

Authorized English language edition jointly published by McGraw-Hill Education (Asia) Co. and Tsinghua
University Press. This edition is authorized for sale only to the educational and training institutions, and within
the territory of the People’s Republic of China (excluding Hong Kong, Macao SAR and Taiwan). Unauthorized
export of this edition is a violation of the Copyright Act. Violation of this Law is subject to Civil and Criminal
Penalties.

A SRS B AR R K5 H RS RS [2 55 -5 2R B0 AR I) 2] 15 1 AR o BERRAS O BRAE Hh A2 A
PSR B8 Y (ARG b A TR AT B R [5 v S) B0 B R AR IS 2 i 4 . R vr)
ZAR L, BB RCEVERGE, A3 E 2

AR WE A IVFaT, AN RMTA 7 252) sl b A5 AT A 8 5

JEE T RBUR AR A L S B 01-2009-4350

ABHEMEE McGraw-Hill AR FFARE, TREERSHE.
MR, BRLR. RNEEIREIE: 010 62782989 13701121933

E RS B (CIP) R

CHHIT AR SRR BT : 2 4 iz = Object Oriented Programming with C++, Fourth Edition: #5350/ (E1) [
il K (Balagurusamy, E) #. —dbal: R RFEHRLE, 2009.9

CREFTHENLECE [E 405 2 B 251D
ISBN 978-7-302-20732-0

[.C- . B I.CiEE—BREEi—ESsR—#M—3%r V. TP312
b R A B A CIP Bl i 7 (2009) 2 144171 5

RAEEDH): &Mk

HARAIT: 5 A R4 1IN || O | = < N =2 1 BN | W
http:/ /www.tup.com.cn i 45: 100084
#t = Hl: 010-62770175 il M. 010-62786544

¥R 5IEERS: 010-62776969, c-service@tup. tsinghua. edu. cn
B 2 & & 010-62772015, zhiliang@tup. tsinghua. edu. cn

BN % &: L@l iy PR A

£ 1T &H: SEBERE

FF A 185X230 Efak: 40.75

KR R: 2009 4E9 A1 En MR 2009 4E 9 451 YRENRI
Ef #. 1~3000

iE t: 66.00 JC

APBUAEAE LT AN EDS BRTT, BT, 5 TT 25 B oo) 4, 13 50 T 2 H BB R R
P4, ARG 010-62770177 4 3103 FEh RS 034369-01

ol B W

HEA 21 14, A& E s BHE AR SR R (K SE e SN . e hueo
SRR AA RS, WG KRS R RIOAA, M A/ e IS s, fF
W RS EIRNA I, WRZ R E. AR SR B R, T
DRSO 1 S BT ARR , CRT T8 I A K 3 (R 3 Pl s R R S SR M

W AL A 1996 (ETTUR, L5 EANE 4 HRA R A AE, SBEIHAR T “ KA 5AL
HEAD GREIRD” 45 R50518E 5, 5230 N B YGIATSCRE . B 21 A, 3
A TAR AT b T e A B BRSSO, AL A ISR L, BT RN,
AR TFA R S, A M i A 6 B 36 P TR T e R A R S A T SR
K| G2 LM il 44, AL AEE RS SN AN B B R4 GERIRO ™, L
ST o TRV R I K A P AR ZR 90 SO TR R R L S s Bl o SE A B R A K
BB BN 1) A THEE E AN ST IO 75 0, ARIFRATTHE “ R STHLEE b 44
HbE ZAH) GEEIO” WAL, Bl & B AE i) w22 .

AR AL

Object-Oriented Programming (OOP) has become the preferred programming approach by
the software industries, as it offers a powerful way to cope with the complexity of real-world
problems. Among the OOP languages available today, C++ is by far the most widely used
language.

Since its creation by Bjarne Stroustrup in early 1980s, C++ has undergone many changes
and improvements. The language was standardized in 1998 by the American National
Standards Institute (ANSI) and the International Standards Organization (ISO) by
incorporating not only the new features but also the changes suggested by the user groups.
This book has been thoroughly revised and this edition confirms to the specifications of
ANSI/ISO standards. Besides confirming to the standards, many smaller changes and
additions to strengthen the existing topics as well as corrections to typographical errors and
certain inaccuracies in the text have been incorporated. The highlight of this edition is the
inclusion of two new programming projects in Appendix A - (1) Menu Based Calculation
System and (2) Banking System that demonstrate how to integrate the various features of
C++ in real life applications.

This book is for the programmers who wish to know all about C++ language and object-
oriented programming. It explains in a simple and easy-to-understand style the what, why
and how of object-oriented programming with C++. The book assumes that the reader is
already familiar with C language, although he or she need not be an expert programmer.

The book provides numerous examples, illustrations and complete programs. The sample
programs are meant to be both simple and educational. Wherever necessary, pictorial
descriptions of concepts are included to improve clarity and facilitate better understanding.
The book also presents the concept of object-oriented approach and discusses briefly the
important elements of object-oriented analysis and design of systems.

IKey Pedagogical Features

I 1.1 Software Crisis

Key Concepts

Key concepts provide a quick look
into the concepts that will be
discussed in the chapter. These are
followed by an Introduction that
introduces the topics to be covered in
that chapter and also relates them to
those already learned.

4

/ Key Concepts

Software evolution
Procedure-oriented programming

Developments in software technology
continue to be dynamic. New tools and
techniques are announced in quick
succession.This has forced the software
engineers and industry to continuously look
for new approaches to software design and
devel and they are becoming more

Object-oriented progr
Objects

Classes

Data abstraction
Encapsulation
Inheritance
Polymorphism
Dynamic binding
Message passing
Object-oriented languages
Object-based languages

YYYYYYVYYYVYYVYY

and more critical in view of the increasing
lexity of software systems as well as

the highly competitive nature of the
industry. These rapid advances appear to
have created a situation of crisis within the
industry. The following issues need to be
addressed to face this crisis:

® How to represent real-life entities
of problems in system design?

® How to design systems with open
interfaces?

Inented Programming with <+

Ogert
the next beging. Thes aetivitios inelude problem dofinition, requirement
nunce. Further refinements to this model include

nks

problem in us
oftware 1t help

tded “scstter-all' mode)

mien! e cycle (Esib

Program Codes

Codes with comments are given throughout
the book to elaborate how the various lines
of code work.

® 29

g with C++
The output of Program 2.4 1s

Enter Name: Ravinder
Enter Age: 30

Name: Ravinder
30

Age:

[

The program defines person as a new data of
type class. T s person includes two basic
data type item: d two functions Lo operate on
that data. These functions are called member
functions. The main program uses person to
declare variables of its type. As pointed out
earlier, class variables are known as objects. Here, p is an object of type person. Class
sed to invoke the functions defined in that class. More about classes and objects

note

ne ¢

cin can read only ane word and
therefore we cannot use names with

blank spaces

ed in Chapter 5

Figures

Figures are used exhaustively in the text
to illustrate the concepts and methods

described.

and Objects ———0123

Classes

#include <iostream>
using namespace std;
class time

{

hours;
minutes;

int
nt
public:
void gettime(int h, int m)
{ hours = h; minutes = m; |
vaid puttime(void)
{

* hours and *;
* minutes *

cout: << hours <<
cout << minutes <<
)

void sum(time, time); // decloration with objects as arguments

IH
void time :: sum(time t1, time t2) /] ti, t2 are objects
{
minutes = tl.minutes + t2.minutes:
hours = minutes/60;
minutes = minutess60;
hours = hours + t1.hours + t2.hours;
int main()
time T1, 12, 13;
Tl.gettime(2,45); // get T1
T2.gettime(3,30); // get 12

13.5um(T1,72); // T3=T1412

// display 11
// display 12
// display 13

Tl.puttime();
T2.puttime();
“; T3.puttime();

cout << "T1 = "
cout << "T2 =
cout << “T3

return 0;

)
PROGRAM 5.7

Summary //’

Summary gives the essence of each chapter
in the form of bulleted points which will
be helpful for a quick review during the
examinations.

| __—Notes

Language tips and other special
considerations are highlighted as
notes wherever essential.

48

=

SUMMARY

C+ s a superset of C language

C++ adds a number of object-oriented features such as objects, inhtar

overloading and operatar overlonding to C. These features enable buildu: of programs
» of maintenance

ce. function

with clarity, extensibility and eas
C++ can be used to build a variety of systems such as editors, compilers, databases,

communication systems, and many more complex real-life application systems.
C++ supports interactive input and output features and introduces a new comment
symbol // that ean be used for single line comments. It also supports C-style comments.
stion of all C++ programs begins at main() function and ends at
The header file iostream should be included at the beginning of

Like C programs, e»
return() statement,
all programs that use inputioutput operations

Key Terms //

Key terms listed in each chapter give the
list of important terms discussed in the

chapter.

9.1 What does polymorphism mean in C++ language?
9.2 How is polymorphism achieved at (a) compile time, and (b) run time?

object
9.4

Explain, with an example, how you would create space for an array
using pointers.
9.5 What does this pointer point to?

I Review Questions /

9.3 Discuss the different ways by which we can access public member functions of an

of objects

©283

Key Terms
I

VY Y Y Y YYYYYYYYYYYYYY VY

YYYVYYYYYVYYYYYYYYYYYYYY

__————Chapter-end Exercises

More than 350 chapter-end exercise
problems are given for the students to work
out and practice. These include review
questions, debugging exercises and

programming problems.

Programming Projects

The two programming projects in
Appendix A will give an insight on how
to integrate the various features of C++ in
real-life problems.

Appendix H

| C++ Proficiency Test I

PartA

I True / False Questions

State whether the following statements are true ar false

s in coding

function
do functions.

. Obyect m

5. In using an define our own data types

that appears first in the program is

sume number of bytes.

yaten, the data types float and long occupy the
ignment statement such s

int x =

expression;

the value of x 1
9. In C+s

ys equal to the value of the expression on the right

duclarations can appear almost anywhere in the body of a function

Appendix A

Project !

l;\.l Menu Based Calculation System

Learning Objectives

The designing of the menu based caleulation system project will help the students to

\

Proficiency Test

An appendix on proficiency test will help
the readers assess their level of mastery on
the language.

XVi @— Preface

Iyeb Supplement

The following additional information is available on the web at http:/www.mhhe.com/

balagurusamy/oop4e
Solution to the Debugging Exercises
Chapter-wise self-test quiz with answers
Complete code with step-by-step description and user manual for Payroll Management
Systems (Major Project) and Hospital Management Systems (Minor Project).
Differences between ANSI C, C++ and ANSI/ISO C++
IAcknowledgements

Since the release of the first edition of this book a decade ago, lakhs of teachers, students
and professional programmers have been using the book. Their overwhelming support
encouraged me to bring out the Third Edition in 2006 and now the Fourth Edition.

My sincere thanks are due to the editorial and publishing professionals of Tata
McGraw-Hill for their keen interest and support in bringing out this edition in the present

form.

E BALAGURUSAMY

Preface

XLl

Il. Principles of Object-Oriented Programming 1
1.1 Software Crisis I
1.2 Software Evolution 3
1.3 A Look at Procedure-Oriented Programming 4
1.4 Object-Oriented Programming Paradigm 6
1.5 Basic Concepts of Object-Oriented Programming 7
1.6 Benefits of OOP 12
1.7 Object-Oriented Languages 13
1.8 Applications of OOP 14
Summary 15
Review Questions 17
|2. Beginning with C++ 19
21 What is C++? 19
2.2 Applications of C++ 20
23 A Simple C++ Program 20
2.4 More C++ Statements 25
2.5 An Example with Class 28
2.6 Structure of C++ Program 29
2.9 Creating the Source File 30
2.8 Compiling and Linking 30
Summary 31
Review Questions 32
Debugging Exercises 33
Programming Exercises 34
|3. Tokens, Expressions and Control Structures 35

3.1
3.2
3.3
3.4
3.5
3.6
3.7

Introduction 35

Tokens 36

Keywords 36

Identifiers and Constants 36
Basic Data Types 38
User-Defined Data Types 40
Derived Data Types 42

Vi — Contents

3.8 Symbolic Constants 43
3.9 Type Compatibility 45
3.10 Declaration of Variables 45
3.11 Dynamic Initialization of Variables 46
3.12 Reference Variables 47
3.13 Operators in C++ 49
3.14 Scope Resolution Operator 50
3.15 Member Dereferencing Operators 52
3.16 Memory Management Operators 52
3.17 Manipulators 55
3.18 Type Cast Operator 57
3.19 Expressions and their Types 58
3.20 Special Assignment Expressions 60
3.21 Implicit Conversions 61
3.22 Operator Overloading 63
3.23 Operator Precedence 63
3.24 Control Structures 64
Summary 69
Review Questions 71
Debugging Exercises 72
Programming Exercises 75

|4. Functions in C+ +

4.1 Introduction 77

4.2 The Main Function 78

4.3 Function Prototyping 79

4.4 Call by Reference 81

4.5 Return by Reference 82

4.6 Inline Functions &2

4.7 Default Arguments 84

4.8 const Arguments 87

4.9 Function Overloading 87

4.10 Friend and Virtual Functions 89

4.11 Math Library Functions 90
Summary 90
Review Questions 92
Debugging Exercises 93
Programming Exercises 95

E Classes and Objects

5.1 Introduction 96
5.2 C Structures Revisited 97
5.3 Specifying a Class 99

Contents

5.4 Defining Member Functions 103
5D A C++ Program with Class 104
5.6 Making an Outside Function Inline 106
5.7 Nesting of Member Functions 107
5.8 Private Member Functions 108
5.9 Arrays within a Class 109
5.10 Memory Allocation for Objects 114
5.11 Static Data Members 115
5.12 Static Member Functions 117
5.13 Arrays of Objects 119
5.14 Objects as Function Arguments 122
5.15 Friendly Functions 124
5.16 Returning Objects 130
5.17 const Member Functions 132
5.18 Pointers to Members 132
5.19 Local Classes 134
Summary 135
Review Questions 136
Debugging Exercises - 137
Programming Exercises 142

® Vii

I6. Constructors and Destructors 144
6.1 Introduction 144
6.2 Constructors 145
6.3 Parameterized Constructors 146
6.4 Multiple Constructors in a Class 150
6.5 Constructors with Default Arguments 153
6.6 Dynamic Initialization of Objects 153
6.7 Copy Constructor 156
6.8 Dynamic Constructors 158
6.9 Constructing Two-dimensional Arrays 160
6.10 const Objects 162
6.11 Destructors 162
Summary 164
Review Questions 165
Debugging Exercises 166
Programming Exercises 169
Operator Overloading and Type Conversions 171

7.1 Introduction 171

7.2 Defining Operator Overloading 172,
7.3 Overloading Unary Operators 173
7.4 Overloading Binary Operators 176

Viii 8—

Contents

7.5
7.6
7.7
7.8

Overloading Binary Operators Using Friends 179
Manipulation of Strings Using Operators 183
Rules for Overloading Operators 186

Type Conversions 187

Summary 195

Review Questions 196

Debugging Exercises 197

Programming Exercises 200

|8. Inheritance: Extending Classes 201
8.1 Introduction 201
8.2 Defining Derived Classes 202
8.3 Single Inheritance 204
8.4 Making a Private Member Inheritable 210
8.5 Multilevel Inheritance 213
8.6 Multiple Inheritance 218
8.7 Hierarchical Inheritance 224
8.8 Hybrid Inheritance 225
8.9 Virtual Base Classes 228
810 Abstract Classes 232
8.11 Constructors in Derived Classes 232
8.12 Member Classes: Nesting of Classes 240
Summary 241
Review Questions 243
Debugging Exercises 243
Programming Exercises 248
l9. Pointers, Virtual Functions and Polymorphism 251
9.1 Introduction 251
9.2 Pointers 253
9.3 Pointers to Objects 265
9.4 this Pointer 270
9.5 Pointers to Derived Classes 273
9.6 Virtual Functions 275
9.7 Pure Virtual Functions 281
Summary 282
Review Questions 283
Debugging Exercises 284
Programming Exercises 289
IlO. Managing Console I/O Operations 290

10.1
10.2

Introduction 290
C++ Streams 291

Contents

10.3
10.4
10.5
10.6

C++ Stream Classes 292

Unformatted I/O Operations 292
Formatted Console I/O Operations 301
Managing Output with Manipulators 312
Summary 317

Review Questions 319

Debugging Exercises 320

Programming Exercises 321

ix

|11. Working with Files 323
11.1 Introduction 323
11.2 Classes for File Stream Operations. 325
11.3 Opening and Closing a File 325
11.4 Detecting end-of-file 334
11.5 More about Open(): File Modes 334
11.6 File Pointers and Their Manipulations 335
11.7 Sequential Input and Output Operations 338
11.8 Updating a File: Random Acess 343
11.9 Error Handling During File Operations 348
11.10 Command-line Arguments 350
Summary 353
Review Questions 355
Debugging Exercises 356
Programming Exercises 358
I 12. Templates 359
12.1 Introduction 359
12.2 Class Templates 360
12.3 Class Templates with Multiple Parameters 365
12.4 Function Templates 366
12.5 Function Templates with Multiple Parameters 371
12.6 Overloading of Template Functions 372
12.7 Member Function Templates 373
12.8 Non-Type Template Arguments 374
Summary 375
Review Questions 376
Debugging Exercises 377
Programming Exercises 379
I 13. Exception Handling 380

13.1
13.2

Introduction 380
Basics of Exception Handling 381

x.i

Contents

13.3
13.4
13.5
13.6
13.7

Exception Handling Mechanism 381
Throwing Mechanism 386

Catching Mechanism 386
Rethrowing an Exception 391
Specifying Exceptions 392
Summary 394

Review Questions 395

Debugging Exercises 396
Programming Exercises 400

|14. Introduction to the Standard Template Library 401
14.1 Introduction 401
14.2 Components of STL. 402
14.3 Containers 403
14.4 Algorithms 406
14.5 Iterators 408
14.6 Application of Container Classes 409
14.7 Function Objects 419
Summary 421
Review Questions 423
Debugging Exercises 424
Programming Exercises 426
llS. Manipulating Strings 428
15.1 Introduction 428
15.2 Creating (string) Objects 430
15.3 Manipulating String Objects 432
154 Relational Operations 433
15.5 String Characteristics 434
15.6 Accessing Characters in Strings 436
15.7 Comparing and Swapping 438
Summary 440
Review Questions 441
Debugging Exercises 442
Programming Exercises 445
446

|16. New Features of ANSI C+ + Standard

16.1
16.2
16.3
16.4

Introduction 446

New Data Types 447

New Operators 449

Class Implementation 451

16.5
16.6
16.7
16.8

Contents

Namespace Scope 453
Operator Keywords 459
New Keywords 460

New Headers 461
Summary 461

Review Questions 463
Debugging Exercises 464
Programming Exercises 467

Xi

|17. Object-Oriented Systems Development 468

17.1 Introduction 468

17.2 Procedure-Oriented Paradigms 469

17.3 Procedure-Oriented Development Tools 472

17.4 Object-Oriented Paradigm 473

17.5 Object-Oriented Notations and Graphs 475

17.6 Steps in Object-Oriented Analysis 479

17.7 Steps in Object-Oriented Design 483

17.8 Implementation 490

17.9 Prototyping Paradigm 490

7.10 Wrapping Up 491

Summary 492
Review Questions 494

Appendix A: Projects 496
Appendix B: Executing Turbo C++ 339
Appendix C: Executing C++ Under Windows 552
Appendix D: Glossary of ANSI C++ Keywords 564
Appendix E: C++ Operator Precedence 570
Appendix F: Points to Remember 572
Appendix G: Glossary of Important C++ and OOP Terms 584
Appendix H: C++ Proficiency Test 596
Bibliography 632

Principles of Object-Oriented |
Programming

YYYYYVYVYYYVYVYYVYY

Key Concepts

Software evolution
Procedure-oriented programming
Object-oriented programming
Objects

Classes

Data abstraction
Encapsulation

Inheritance

Polymorphism

Dynamic binding

Message passing
Object-oriented languages
Object-based languages

|1.1 Software Crisis

Developments in software technology
continue to be dynamic. New tools and
techniques are announced in quick
succession.This has forced the software
engineers and industry to continuously look
for new approaches to software design and
development, and they are becoming more
and more critical in view of the increasing
complexity of software systems as well as
the highly competitive nature of the
industry. These rapid advances appear to
have created a situation of crisis within the
industry. The following issues need to be
addressed to face this crisis:

How to represent real-life entities
of problems in system design?

How to design systems with open
interfaces?

Object-Oriented Programming with C++

N
®

 How to ensure reusability and extensibility of modules?
How to develop modules that are tolerant to any changes in future?
How to improve software productivity and decrease software cost?
How to improve the quality of software?
How to manage time schedules?
How to industrialize the software development process?

L E R B B B

Many software products are either not finished, or not used, or else are delivered with
major errors. Figure 1.1 shows the fate of the US defence software projects undertaken in
the 1970s. Around 50% of the software products were never delivered, and one-third of
those which were delivered were never used. It is interesting to note that only 2% were used
as delivered, without being subjected to any changes. This illustrates that the software
industry has a remarkably bad record in delivering products.

3.5 Paid for but
not received
3 -
Delivered
g 25 but not used
@
3 2+
[}
>
‘g 15— Abandoned
<) or reworked
a 14 Used after
change Used as
delivered
0.5
0 T T T il 1
1 2 3 4 5
Projects

Fig. 1.1 < The state of US defence projects (according to the US government)

Changes in user requirements have always been a major problem. Another study
(Fig. 1.2) shows that more than 50% of the systems required modifications due to changes
in user requirements and data formats. It only illustrates that, in a changing world with a
dynamic business environment, requests for change are unavoidable and therefore systems
must be adaptable and tolerant to changes.

These studies and other reports on software implementation suggest that software products
should be evaluated carefully for their quality before they are delivered and implemented.
Some of the quality issues that must be considered for critical evaluation are:

Correctness

Maintainability

Reusability

Openness and interoperability

L

