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Object-Oriented Programming (OOP) has become the preferred programming approach by
the software industries, as it offers a powerful way to cope with the complexity of real-world
problems. Among the OOP languages available today, C++ is by far the most widely used
language.

Since its creation by Bjarne Stroustrup in early 1980s, C++ has undergone many changes
and improvements. The language was standardized in 1998 by the American National
Standards Institute (ANSI) and the International Standards Organization (ISO) by
incorporating not only the new features but also the changes suggested by the user groups.
This book has been thoroughly revised and this edition confirms to the specifications of
ANSI/ISO standards. Besides confirming to the standards, many smaller changes and
additions to strengthen the existing topics as well as corrections to typographical errors and
certain inaccuracies in the text have been incorporated. The highlight of this edition is the
inclusion of two new programming projects in Appendix A - (1) Menu Based Calculation
System and (2) Banking System that demonstrate how to integrate the various features of
C++ in real life applications.

This book is for the programmers who wish to know all about C++ language and object-
oriented programming. It explains in a simple and easy-to-understand style the what, why
and how of object-oriented programming with C++. The book assumes that the reader is
already familiar with C language, although he or she need not be an expert programmer.

The book provides numerous examples, illustrations and complete programs. The sample
programs are meant to be both simple and educational. Wherever necessary, pictorial
descriptions of concepts are included to improve clarity and facilitate better understanding.
The book also presents the concept of object-oriented approach and discusses briefly the
important elements of object-oriented analysis and design of systems.

IKey Pedagogical Features

I 1.1 Software Crisis

Key Concepts

Key concepts provide a quick look
into the concepts that will be
discussed in the chapter. These are
followed by an Introduction that
introduces the topics to be covered in
that chapter and also relates them to
those already learned.
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/ Key Concepts

Software evolution
Procedure-oriented programming

Developments in software technology
continue to be dynamic. New tools and
techniques are announced in quick
succession.This has forced the software
engineers and industry to continuously look
for new approaches to software design and
devel and they are becoming more

Object-oriented progr
Objects

Classes

Data abstraction
Encapsulation
Inheritance
Polymorphism
Dynamic binding
Message passing
Object-oriented languages
Object-based languages
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and more critical in view of the increasing
lexity of software systems as well as

the highly competitive nature of the
industry. These rapid advances appear to
have created a situation of crisis within the
industry. The following issues need to be
addressed to face this crisis:

® How to represent real-life entities
of problems in system design?

® How to design systems with open
interfaces?
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Program Codes

Codes with comments are given throughout
the book to elaborate how the various lines
of code work.
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g with C++
The output of Program 2.4 1s

Enter Name: Ravinder
Enter Age: 30

Name: Ravinder
30

Age:

[

The program defines person as a new data of
type class. T s person includes two basic
data type item: d two functions Lo operate on
that data. These functions are called member
functions. The main program uses person to
declare variables of its type. As pointed out
earlier, class variables are known as objects. Here, p is an object of type person. Class
sed to invoke the functions defined in that class. More about classes and objects

note

ne ¢

cin can read only ane word and
therefore we cannot use names with

blank spaces

ed in Chapter 5

Figures

Figures are used exhaustively in the text
to illustrate the concepts and methods

described.

and Objects ———0123

Classes

#include <iostream>
using namespace std;
class time

{

hours;
minutes;

int
nt
public:
void gettime(int h, int m)
{ hours = h; minutes = m; |
vaid puttime(void)
{

* hours and *;
* minutes *

cout: << hours <<
cout << minutes <<
)

void sum(time, time); // decloration with objects as arguments

IH
void time :: sum(time t1, time t2) /] ti, t2 are objects
{
minutes = tl.minutes + t2.minutes:
hours = minutes/60;
minutes = minutess60;
hours = hours + t1.hours + t2.hours;
int main()
time T1, 12, 13;
Tl.gettime(2,45); // get T1
T2.gettime(3,30);  // get 12

13.5um(T1,72); // T3=T1412

// display 11
// display 12
// display 13

Tl.puttime();
T2.puttime();
“; T3.puttime();

cout << "T1 = "
cout << "T2 =
cout << “T3

return 0;

)
PROGRAM 5.7

Summary //’

Summary gives the essence of each chapter
in the form of bulleted points which will
be helpful for a quick review during the
examinations.

| __—Notes

Language tips and other special
considerations are highlighted as
notes wherever essential.
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SUMMARY

C+ s a superset of C language

C++ adds a number of object-oriented features such as objects, inhtar

overloading and operatar overlonding to C. These features enable buildu: of programs
» of maintenance

ce. function

with clarity, extensibility and eas
C++ can be used to build a variety of systems such as editors, compilers, databases,

communication systems, and many more complex real-life application systems.
C++ supports interactive input and output features and introduces a new comment
symbol // that ean be used for single line comments. It also supports C-style comments.
stion of all C++ programs begins at main( ) function and ends at
The header file iostream should be included at the beginning of

Like C programs, e»
return( ) statement,
all programs that use inputioutput operations




Key Terms //

Key terms listed in each chapter give the
list of important terms discussed in the

chapter.

9.1 What does polymorphism mean in C++ language?
9.2 How is polymorphism achieved at (a) compile time, and (b) run time?

object
9.4

Explain, with an example, how you would create space for an array
using pointers.
9.5 What does this pointer point to?

I Review Questions /

9.3 Discuss the different ways by which we can access public member functions of an

of objects

©283

Key Terms
I
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__————Chapter-end Exercises

More than 350 chapter-end exercise
problems are given for the students to work
out and practice. These include review
questions, debugging exercises and

programming problems.

Programming Projects

The two programming projects in
Appendix A will give an insight on how
to integrate the various features of C++ in
real-life problems.

Appendix H

| C++ Proficiency Test I

PartA

I True / False Questions

State whether the following statements are true ar false

s in coding

function
do functions.

. Obyect m

5. In using an define our own data types

that appears first in the program is

sume number of bytes.

yaten, the data types float and long occupy the
ignment statement such s

int x =

expression;

the value of x 1
9. In C+s

ys equal to the value of the expression on the right

duclarations can appear almost anywhere in the body of a function

Appendix A

Project !

l;\.l Menu Based Calculation System

Learning Objectives

The designing of the menu based caleulation system project will help the students to

\

Proficiency Test

An appendix on proficiency test will help
the readers assess their level of mastery on
the language.
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Iyeb Supplement

The following additional information is available on the web at http:/www.mhhe.com/

balagurusamy/oop4e
# Solution to the Debugging Exercises
# Chapter-wise self-test quiz with answers
# Complete code with step-by-step description and user manual for Payroll Management
Systems (Major Project) and Hospital Management Systems (Minor Project).
# Differences between ANSI C, C++ and ANSI/ISO C++
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|1.1 Software Crisis

Developments in software technology
continue to be dynamic. New tools and
techniques are announced in quick
succession.This has forced the software
engineers and industry to continuously look
for new approaches to software design and
development, and they are becoming more
and more critical in view of the increasing
complexity of software systems as well as
the highly competitive nature of the
industry. These rapid advances appear to
have created a situation of crisis within the
industry. The following issues need to be
addressed to face this crisis:

# How to represent real-life entities
of problems in system design?

# How to design systems with open
interfaces?
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 How to ensure reusability and extensibility of modules?
How to develop modules that are tolerant to any changes in future?
How to improve software productivity and decrease software cost?
How to improve the quality of software?
How to manage time schedules?
How to industrialize the software development process?

L E R B B B

Many software products are either not finished, or not used, or else are delivered with
major errors. Figure 1.1 shows the fate of the US defence software projects undertaken in
the 1970s. Around 50% of the software products were never delivered, and one-third of
those which were delivered were never used. It is interesting to note that only 2% were used
as delivered, without being subjected to any changes. This illustrates that the software
industry has a remarkably bad record in delivering products.

3.5 Paid for but
not received
3 -
Delivered
g 25 but not used
@
3 2+
[}
>
‘g 15— Abandoned
<) or reworked
a 14 Used after
change Used as
delivered
0.5
0 T T T il 1
1 2 3 4 5
Projects

Fig. 1.1 < The state of US defence projects (according to the US government)

Changes in user requirements have always been a major problem. Another study
(Fig. 1.2) shows that more than 50% of the systems required modifications due to changes
in user requirements and data formats. It only illustrates that, in a changing world with a
dynamic business environment, requests for change are unavoidable and therefore systems
must be adaptable and tolerant to changes.

These studies and other reports on software implementation suggest that software products
should be evaluated carefully for their quality before they are delivered and implemented.
Some of the quality issues that must be considered for critical evaluation are:

Correctness

Maintainability

Reusability

Openness and interoperability
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