N S R S

A
v

PEARSON
pEmmeIe

Addison
Wesley

Java Bk EoR
55 I)

Java Software Solutions
Foundations of Program Design, Fifth Edition

Lewis & Loftus

John Lewis
William Lo_ftus

=3

&' ;.ﬂ'_ = .
€ F I % & AR A3
Publishing House of Electronics Industry
http://www.phei.com.cn

TP312/Y285
c2007.

Java BB & ITHIE
(EEFHRR)

(FE &0)

ESMTENR F R R 51

Java Software Solutions

Foundations of Program Design
Fifth Edition

John Lewis
William Loftus

T F IHF & AR AL
Publishing House of Electronics Industry
Jt5 - BEUING

NEB T

FAR—AVEE Java B Java MG BT, RN b3 I 5B BR LT R AR,
AT B AT 16 X R o S AR A P L SEHH RO SRR S B, A 5 PRI T Ay S 8 e R Oy
R B RLABAHTT o R RIS (A SHERRNEE) REFMREHER, FEENTTAZE
FIGEMRZASRFETWTEREN Bl 5 TN FHER B EREE, A5 EEBR TR0 &
&, B TS CUISES E, B PEE T RBRNHELE, ANESELRAN THREEAMENHRE
BB %,

ABHBESTERE ZEER . WAFS, TR BT RS L 5T BN %l 224 B
ZE4, WAV TIRERARSE,

English reprint Copyright © 2007 by PEARSON EDUCATION ASIA LIMITED and Publishing House of Electronics
Industry.

Java Software Solutions: Foundations of Program Design, Fifth Edition, ISBN: 0321409493 by John Lewis, William Loftus.
Copyright © 2007.

All Rights Reserved. .

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley.

This edition is authorized for sale only in the People’s Republic of China (excluding the Special Administrative Region of
Hong Kong and Macau).

A PSR EIRR T Tl Hi AR 1 Pearson Education 354 808 H BT A FRA A& VE IR . R 2 H IRE T
PR, NIRRT R S R4 BRI
A 433 5 Pearson Education 34 3 HAUERBOLII TS, TAREEABE,

B RSEFEEICS EF: 01-2007-3606

BHERSE (CIP) Wi

Java BRFRITHE (B FHAL) = Java Software Solutions: Foundations of Program Design, Fifth Edition /
() X5 (Lewis,J.) %3, - bt BF LTI HARGE, 2007.8

(BSMTRHRIEEM RF))

ISBN 978-7-121-02774-1

1.J.. I.XI. I.JAVAIEE - BT - 8 - 93 1IV. TP312
b A B 4 CTP BT (2007) 45 064034 2

TiEHE: S/hN
B R TR ERAEERT
¥ T DTS DEHEGRAR
HWIREFT: BTl
R R X T AR 173155 HE%: 100036
F A& 787 x 980 1/16 Epgk. 4875 =¥ 1092 F=F
B K. 200748 A% 1 REPRI
F M 75.000C

JURTIGSE 7 Tl AR AL B P A B o), e BIE RS, BHEEE, H5 R EITHRR, BR
K HRIE GG (010) 88254888,

FEEHVFE KB ZE zlts@phei.com.cn, ¥EAZAZERH KHR4Z dbgq@phei.com.cn,

MR . (010) 88258888,

tH AR it BA

21 2R 5 2 10 FERREERAF S A RNETRNE, BEEE L IREE R R
A, EREMAWTO FHAS K, #FF—3GaEMN B E SN —RIT AAINMLERERSFHEFN
HEEFZ— [FERFMEARAFTEAA NS 5E2E, REREEERRE SRR EERE.

581, EERERFHERIREERFIURNBE HE BENERH, AEREEFE
il -5 B BRI, A 2R B R S B IEAE Ry (5 B 2R RPRIBOR IR FH I AMAL 55 8 L 75 SRR
A, LMERETE RSB ERIGE EERREHKE

BT Tl A AR AR R 5 | #HEEAMEF B B AR, BiFHRT “EINTEVR %M R
37 B, XEFMESEERNOET . 5. BRE, BEARLIIREEM, WaEmREIRRE
B, LIERIAFBER . AR REER G IFAXT A TR, T RIBA 7T H 3 8 ha
B XMW REFER T R EENS SEE . BERE . HEVASS558M . B S5HEES
. BRESFEBAHE . RBES . ARRRSSEE . RETRE, [, RITEEYSI#HT —
WO F S SR RRBAL , A< BRI ARAS AL SR AR I B AR IN , Xot 28 o PR 45 BE R AL 3 SO IR AR SR (A
L Y BIERR AR o

TEE B b, IRATAERIEFFEEINE 2 B IR 7 AR E RSk, 1 Pearson Education B
FHRER . 257 —A/REF HRER . RAETFEE L SIFF RS RS, 85 8
WE R RES R NBER 2, WEARRHT - BHER(Douglas E. Comer) BUHR - iHTAKN William
Stallings). MYt - iR (Harvey M. Deitel). JLHIHT - Hi3ET (Uyless Black) %%,

ABRE RS BB E, BITAE THEERE . e, EEMESHMEAAY. &
BR¥. RBGERYE ., MRERE. WiTLKY¥ . M/RETILRS . EhRE s, RSB,
EBRIERARRYE: B EE T RFFELRRNEENE THINS S5 T ARSI EM %S . BiF
B TAE , Ml T H B YHRRIEBM B THUT . 8+, AR R T ILTEE¥L R 0 EHEZM
B4R,

EERFIEM R . BiEMREN T EES, MEREEMERE, RO T KEMBW T,
ELFEXS BT IR AT 2 ESIE; ERAEE RA B LT O, SHHER . Enl B BT A0 %,
X FESCHEM TR, ROES SESRENM ETREBIRESE R, E2—#f7TEIT.

BeAh, BALEK 5 ESME 2 HIRA RS, B — M MR IFER, H N RIREIT
RAFB, S5, BRITBUEIR S R BREMOEVBR, A7 KITES 38 20 BIMEEEH
MSE, AREHTEIRIEER R R SEREF R R EIUMH S,

AL Tl i AL

£

a0

BhE B

B

FEAH SR

a8 S

5K R

EMHMERES

B[P =€
h E R 2Bk
LB RE(E A G TR
AL BT Ak TR T T

HE A RRAE R FEBR B
FETENFSBIBEER, ZIRELVZER2FEL

HHERAFTENBE S BARREE
= bR fE B AL BRI & 2l (s R EINER

HHRIFHENRE SRR RESE . WL
BHRRFTYNDF A B (s B EE

HE A R E R T REHE
LEMBEARVFR P LEE. EEESIN

A RETENR S S TREREE
b RSO EE

g EPREERE O EE . EERFEEE
HEHEN S SHEE, EBTTT R EREER

EFR BRI BB AR . eI
HEWHT B EMRBH AR S ER A EAERGA

FBRFE R TR R

- Preface

Welcome to the Fifth Edition of Java Software Solutions, Foundations of Program
Design. We are pleased that this book has served the needs of so many students
and faculty over the years. This edition is designed to further enhance the peda-
gogy of introductory computing, particularly with enhanced support for the
instructor.

The overall vision of the book has not changed significantly from that of pre-
vious editions. Feedback from both instructors and students has made it clear that
we are hitting the mark in that regard. The emphasis remains on presenting
underlying core concepts. The Graphics Track sections in each chapter still seg-
regate the coverage of graphics and graphical user interfaces, giving extreme flex-
ibility in how that material gets covered. The casual writing style and entertaining
examples still rule the day.

One of the significant enhancements in this edition is an improved set of end-
of-chapter materials. Additional problem sets have been added to the Self-Review
Questions, Exercises, and Programming Projects in each chapter. Furthermore,
they have been carefully organized to present a nice flow given the topics they
address and their level of challenge.

Some key additions and improvements to the text itself have also been made,
including a new introductory section in Chapter 4. These additions were designed
to strengthen the existing flow of discussion, rather than modifying it. In addi-
tion, we’ve made a complete pass through the text, making numerous minor
adjustments to eliminate ambiguities and bolster understanding.

One other key change was made for this edition: we chose to remove the API
reference material in Appendix M from the printed text. It is stil} available online
as a supplement for those who’d like to use it. However, the main reason for
removing it was to guide students instead to the official APl documentation avail-
able from the java.sun.com Web site. That resource is much more complete than
the abbreviated version we were able to include in the text. Furthermore, it rep-
resents the proper, state-of-the-practice technique for looking up API details that
professional programmers use every day. We should encourage our students to
become familiar with and actively use that official resource.

Cornerstones of the Text

This text is based on the following basic ideas that we believe make for a sound
introductory text:

> True object-orientation. A text that really teaches a solid object-oriented
approach must use what we call object-speak. That is, all processing
should be discussed in object-oriented terms. That does not mean, how-
ever, that the first program a student sees must discuss the writing of mul-
tiple classes and methods. A student should learn to use objects before
learning to write them. This text uses a natural progression that culmi-
nates in the ability to design real object-oriented solutions.

> Sound programming practices. Students should not be taught how to pro-
gram; they should be taught how to write good software. There’s a differ-
ence. Writing software is not a set of cookbook actions, and a good
program is more than a collection of statements. This text integrates prac-
tices that serve as the foundation of good programming skills. These prac-
tices are used in all examples and are reinforced in the discussions.
Students learn how to solve problems as well as how to implement solu-
tions. We introduce and integrate basic software engineering techniques
throughout the text. '

> Examples. Students learn by example. This text is filled with fully imple-
mented examples that demonstrate specific concepts. We have intertwined
small, readily understandable examples with larger, more realistic ones.
There is a balance between graphics and nongraphics programs.

> Graphics and GUIs. Graphics can be a great motivator for students, and
their use can serve as excellent examples of object-orientation. As such,
we use them throughout the text in a well-defined set of sections that we
call the Graphics Track. This coverage includes the use of event processing
and GUIs. Students learn to build GUIs in the appropriate way by using a
natural progression of topics. The Graphics Track can be avoided entirely
for those who do not choose to use graphics.

Chapter Breakdown

Chapter 1 (Introduction) introduces computer systems in general, including basic
architecture and hardware, networking, programming, and language translation.
Java is introduced in this chapter, and the basics of general program development,
as well as object-oriented programming, are discussed. This chapter contains
broad introductory material that can be covered while students become familiar
with their development environment.

Chapter 2 (Data and Expressions) explores some of the basic types of data
used in a Java program and the use of expressions to perform calculations. It dis-
cusses the conversion of data from one type to another, and how to read input
interactively from the user with the help of the standard Scanner class.

Chapter 3 (Using Classes and Objects) explores the use of predefined classes
and the objects that can be created from them. Classes and objects are used to
manipulate character strings, produce random numbers, perform complex calcu-
lations, and format output. Enumerated types are also discussed.

Chapter 4 (Writing Classes) explores the basic issues related to writing classes
and methods. Topics include instance data, visibility, scope, method parameters,
and return types. Encapsulation and constructors are covered as well. Some of the
more involved topics are deferred to or revisited in Chapter 6.

Chapter 5 (Conditionals and Loops) covers the use of boolean expressions to
make decisions. All related statements for conditionals and loops are discussed,
including the enhanced version of the for loop. The scanner class is revisited for
iterative input parsing and reading text files.

Chapter 6 (Object-Oriented Design) reinforces and extends the coverage of
issues related to the design of classes. Techniques for identifying the classes and
objects needed for a problem and the relationships among them are discussed.
This chapter also covers static class members, interfaces, and the design of
enumerated type classes. Method design issues and method overloading are also
discussed.

Chapter 7 (Arrays) contains extensive coverage of arrays and array processing.
Topics include command-line arguments, variable length parameter lists, and
multidimensional arrays. The ArrayList class and its use as a generic type is
explored as well.

Chapter 8 (Inheritance) covers class derivations and associated concepts such
as class hierarchies, overriding, and visibility. Strong emphasis is put on the
proper use of inheritance and its role in software design.

Chapter 9 (Polymorphism) explores the concept of binding and how it relates
to polymorphism. Then we examine how polymorphic references can be accom-
plished using either inheritance or interfaces. Sorting is used as an example of
polymorphism. Design issues related to polymorphism are examined as well.

Chapter 10 (Exceptions) explores the class hierarchy from the Java standard
library used to define exceptions, as well as the ability to define our own excep-
tion objects. We also discuss the use of exceptions when dealing with input and
output, and examine an example that writes a text file.

Chapter 11 (Recursion) covers the concept, implementation, and proper use of
recursion. Several examples from various domains are used to demonstrate how
recursive techniques make certain types of processing elegant.

Chapter 12 (Data Structures) introduces the idea of a collection and its under-
lying data structure. Abstraction is revisited in this context and the classic data
structures are explored. Generic types are introduced as well. This chapter serves
as an introduction to a CS2 course.

Supplements

Student CD
This CD includes:

> Source code for all the programs in the text.
> Various Java development environments.

If a CD did not come with your book or you can’t locate your CD, you can access
most of these items at www.aw.com/cssupport

Other CDs Upon Request

Professors using this book in a course may want to order it with one of many
other available Java development environments. Contact your campus Addison-
Wesley representative for a list of current IDEs and their specific ISBNs to order.

MyCodeMate—Your Own T.A. Just a Click Away

Addison-Wesley’s MyCodeMate is a book-specific Web resource that provides
tutorial help and evaluation of student programs. Example programs throughout
the book and selected Programming Projects from every chapter have been inte-
grated into MyCodeMate. Using this tool, a student is able to write and compile
programs from any computer with Internet access, and receive guidance and feed-
back on how to proceed and on how to address compiler error messages.
Instructors can track each student’s progress on Programming Projects from the
text or can develop projects of their own. A complementary subscription of
MyCodeMate is offered when the access code is ordered in a package with a new
copy of this text. Subscriptions can also be purchased online. For more infor-
mation visit www.mycodemate.com, or contact your campus Addison-Wesley
representative.

Instructor Resources

The following supplements are available to qualified instructors only. Visit the
Addison-Wesley Instructor Resource Center (www.aw.com/irc) or send an e-mail
to computing@aw.com for information on how to access them:

> Presentation Slides—in PowerPoint.

> Solutions—includes solutions to exercises and programming projects.

> Test Bank with powerful test generator software—includes a wealth of
free response, multiple-choice, and true/false type questions.

> Lab Manual—lab exercises are designed to accompany the topic progres-
sion in the text. A printed version of this manual is also available.

Acknowledgments

We are most grateful to the faculty and students from around the world who have
provided their feedback on previous editions of this book. We are pleased to see
the depth of the faculty’s concern for their students and the students’ thirst for
knowledge. Your comments and questions are always welcome.

We continue to be amazed at the talent and effort demonstrated by the team
at Addison-Wesley. Michael Hirsch, our editor, has amazing insight and commit-
ment. His assistant, Lindsey Triebel, is a source of consistent and helpful support.
Marketing Manager Michelle Brown makes sure that instructors understand the
pedagogical advantages of the text. The cover and interior design were designed
by the skilled talents of Joyce Wells. Marilyn Lloyd led the production effort. The
Addison-Wesley folks are supported by a phenomenal team at Argosy Publishing,
including Megan Schwenke and Edalin Michagl. We thank all of these people for
ensuring that this book meets the highest quality standards.

Special thanks go to the following people who provided valuable advice to us
about this book via their participation in focus groups, interviews, and reviews:
Robert Burton—Brigham Young University; John Chandler—Oklahoma State
University; Dave Musicant—Carleton College; Patricia Roth—Southern
Polytechnic State University; Saroja Kanchi—Kettering University; Elizabeth
Adams—James Madison University; Stuart Steiner—Eastern Washington
University; Laurie Murphy—Pacific Lutheran University; Dodi Coreson—Linn
Benton Community College.

The reviewers of previous editions of this text, as well as many other instruc-
tors and friends, have provided valuable feedback. They include:

Lewis Barnett University of Richmond
Tom Bennet Mississippi College
Gian Mario Besana DePaul University

Hans-Peter Bischof
Robert Burton
James Cross
Robert Cohen
Eman El-Sheikh
Christopher Eliot
Matt Evett

John Gauch

Chris Haynes
Laurie Hendren
James Heliotis
Mike Higgs

Karen Kluge

Jason Levy

Peter MacKenzie
Blayne Mayfield
Faye Navabi-Tadayon
Lawrence Osborne
Barry Pollack

B. Ravikumar
David Riley

Jerry Ross
Carolyn Schauble

- Arjit Sengupta

Vijay Srinivasan
Katherine St. John
Ed Timmerman
Shengru Tu

Paul Tymann
John J. Wegis
Linda Wilson
David Wittenberg
Wang-Chan Wong

Rochester Institute of Technology
Brigham Young University

Auburn University

University of Massachusetts, Boston
University of West Florida

University of Massachusetts, Amherst
Eastern Michigan University
University of Kansas

Indiana University

McGill University

Rochester Institute of Technology
Austin College -

Dartmouth College

University of Hawaii

McGill University

Oklahoma State University

Arizona State University

Lamar University

City College of San Francisco
University of Rhode Island

University of Wisconsin (La Crosse)
Lane Community College

Colorado State University

Georgia State University

JavaSoft, Sun Microsystems, Inc.
Lehman College, CUNY

University of Maryland, University College
University of New Orleans '
Rochester Institute of Technology
JavaSoft, Sun Microsystems, Inc.
Dartmouth College

Brandeis University

California State University (Dominguez Hills)

Thanks also go to my colleagues at Villanova University who have provided so

much wonderful feedback. They include Bob Beck, Cathy Helwig, Dan Joyce,
Anany Levitin, Najib Nadi, Beth Taddei, and Barbara Zimmerman.
Special thanks go to Pete DePasquale of The College of New Jersey for the

design and evolution of the PaintBox project, as well as the original Java Class
Library appendix.

Many other people have helped in various ways. They include Ken Arnold,
Mike Czepiel, John Loftus, Sebastian Niezgoda, and Sammy Perugini. Our apolo-
gies to anyone we may have forgotten.

The ACM Special Interest Group on Computer Science Education (SIGCSE) is
a tremendous resource. Their conferences provide an opportunity for educators
from all levels and all types of schools to share ideas and materials. If you are an
educator in any area of computing and are not involved with SIGCSE, you’re
missing out.

.11 -

Feature Walkthrough

A variable can store only one value of its declared type. A new
value overwrites the old one. In this case, when the value 10 is

Key Concepts. Throughour the ot sgren e o i . 4ot

ey ooy ever, as follows:

text, the Key Concept boxes high-
light fundamental ideas and impor-
tant guidelines. These concepts are

After ininalizanon: sides 7

After first assignment: sides 10

When a reference 1s made to a variable, such as when 1t is printed, the value of

. the variable is not changed. This is the nature of computer memory: Accessing
summarized at the end of each {reidiig) data leaves che values i imemoky intact, bic wiiting data replaces the
old data with the new.
chapter.
— —
— -

Usting 10.3

S A R SR s e s T

// Propagation.java Author: Lewis/Loftus |

17

// Demonstrates exception propagation.

£1 DAmnitrsCes excepiion BIOBAGALION. evesssresssusvessavess

{ i SSSERN v i
// Invokes the levell method to begin the exception demonstration. L. .
SEkete pabTe v A (ST sReT T Listings. All programming exam-
Y avosptionsacpe deisis new, KxCHEEGRSCOERLYS ples are presented in clearly labeled
system.out .println(*Progran beginning."); listings, followed by the program
demo.levell();
System.out.println("Program ending."); Output, a Sample run, or screen
}
’ shot display as appropriate. The
code is colored to visually distin-
b 4
Program beginning. :
favel 1 beaimnioa. guish comments and reserved
Level 3 beginning.
words.

The exception message is: / by zero

The call stack trace:

java.lang.ArithmeticException: / by zero
at ExceptionScope.level3(ExceptionScope.java:54)
at ExceptionScope.level2(ExceptionScope.javatdl)
at ExceptionScope.levell(ExceptionScope.javai18)
at ion.main(on.javarl7)

Level 1 ending.
Program ending.

T

v J9

70 CHAPTER 2 Datc and Expressions

Syntax Diagrams. At appropriate
points in the text, syntactic ele-
ments of the Java language are dis-
cussed in special highlighted sec-
tions with diagrams that clearly
identify the valid forms for a state-
ment or construct. Syntax dia-

Graphics Track. All processing
that involves graphics and graphi-
cal user interfaces is discussed in
one or two sections at the end of
each chapter that we collectively
refer to as the Graphics Track.
This material can be skipped with-
out loss of continuity, or focused
on specifically as desired. The
material in any Graphics Track
section relates to the main topics
of the chapter in which it is found.
Graphics Track sections are indi-
cated by a patterned border on the
edge of the page.

s grams for the entire Java language
are presented in Appendix L.

IEX THE COMPONENT CLASS HIERARCHY

All of the Java classes that define GUI components are part
of a class hierarchy, shown in part in Figure 8.7. Almost all
Swing GUI components are derived from the Jcomponent
class, which defines how all components work in general.
Jcomponent is derived from the Container class, which in
turn is derived from the component class. |

e RCY CONCCDL
The classes that represent java GUI
components are organized into a class.

; hierarchy.

You'll recall that there are two primary GUI APIs used in Java: the Abstract
Windowing Toolkit (AWT) and the Swing classes. The AWT is the original set of
graphics classes in Java. Swing classes were introduced larer, adding components |
that provided much more functionality than their AWT counterparts. We use
Swing components in our examples in this book. In the component class hierar-
chy, some Swing classes are ultimarely derived from AWT classes.

Both container and component are original AWT classes. The Component
class contains much of the general functionality that applies to all GUI compo-
nents, such as basic painting and event handling. So although we may prefer to
use some of the specific Swing components, they are based on core AWT concepts
and respond to the same events as AWT components. Because they are derived
from Container, many Swing components can serve as containers, though in
most circumstances those abilities are curtailed. For example, we've scen that a
JLabel object can contain an image, but it cannot be used as a generic container
to which any component can be added.

Many features that apply to all Swing components are defined in the
Jcomponent class and are inherited into its descendants. For example, we have
the ability to put a border on any Swing component (as we saw in Chapter 6).
This ability is defined once in the Jcomponent class and is inherited by any class
that is derived, directly or indirectly, from it.

- 13 -

634 CHAPTER 12 Collections

v

implementing a collection.

v

An object, with its well-defined interface, is a perfect mechanism for

The size of a dynamic data structure grows and shrinks as needed.

ged by storing and

> Ad ically linked list is
objects.
> Insert and delete operations can be i

obiect references.

v

defined.

v

manner.

v

mannet.

v

v

edges.

v

various ways.

v

Self-Review Questions and
Answers. These short-answer ques-
tions review the fundamental ideas
and terms established in the chap-
ter. They are designed to allow stu-
dents to assess their own basic
grasp of the material. The answers
to these questions can be found at
the end of the problem sets.

14 -

P

A queue is a lincar data structure that manages data in a first-in, first-out
A stack is a linear data structure that manages data in a last-in, first-out

A tree is a non-linear data structure that organizes data into a hierarchy.

A graph is a non-lincar data structure that conneces nodes using generic

The classes of the Java Collections API are implemented as generic types.

I — ™\

Self-Review Questions

SR 12.1 'What is a collection?

SR 122 Why are objects particularly well suited for implementing
abstract data types?

SR 12.3 Whart is a dynamic data structure?

SR 12.4 Describe the steps, depicted in Figure 12.2, to insert a node

Many variations on the implementation of dynamically linked lists can be

The Java Collections API defines several collection classes implemented in

into a list. What special cases exist?

{
Summary of Key Concepts. The Key
Concepts presented throughout a
chapter are summarized at the end of
the chapter.

Answers to Self-Review Questions

SR 12.1

SR 12.2

A collection is an object whose purpose is to store and organize
primitive data or other objects. Some collections represent clas-
sic data structures that are helpful in particular probiem solv-
ing situations.

An abstract data type (ADT) is a collection of data and the
operations that can be performed on that data. An object is
essentially the same thing in that we encapsulate related vari-

e — I

Exercises. These intermediate
problems require computations,
the analysis or writing of code
fragments, and probing questions
about the chapter content. While
the exercises may deal with code,
they generally do not require any
online activity.

= S

Programming Projects

PP12.1 Consistent with the example from Chapter 7, design and imple-
ment an application that maintains a collection of compact
discs using a linked list. In the main method of the driver class,
add various CDs to the collection and print the list when
complete.

PP 12.2 Modify the MagazineRack program presented in this chapter
by adding delete and insert operations into the MagazineList
class. Have the Magazine class implement the Comparable
interface, and base the processing of the insert method on
calls to the compareTo method in the Magazine class that
determines whether one Magazine title comes before another
lexicographically. In the driver, exercise various insertion and
deletion operations. Print the list of magazines when complete.

PP 12.3 Design and implement a version of selection sort (from Chapter
9) that operates on a linked list of nodes that each contain an
integer.

PP 12.4 Design and implement a version of insertion sort (from
Chapter 9) that operates on a linked list of nodes that each
contain an integer.

PP 12.5 Design and implement an application that simulates the cus-
tomers waiting in line at a bank. Use a queue data structure to

Addison-Wesley’s MyCodeMate.
Working online, students can view,
compile, run, and edit select program-
ming problems and all code listings
from the textbook. Look for this
MyCodeMate icon to see which
Programming Projects are available
with your included online subscription

Exercises

EX 12.1 Suppose current is a reference to a Node object and that it
currently refers to a specific node in a linked list. Show, in
pseudocode, the steps that would delete the node following
current from the list. Carefully consider the cases in which
current is referring to the first and last nodes in the list.

EX 12.2 Modify your answer to Exercise 12.1 assuming that the list
was set up as a doubly linked list, with both next and prev

references.

EX 12.3 Supposc current and newNode are references to Node objects.
Assume current currently refers to a specific node in a linked
list and newNode refers to an unattached Node object. Show, in
pseudocode, the steps that would insert newNode behind
current in the list. Carefully consider the cases in which
current is referring to the first and last nodes in the list.

EX 124 Modify your answer to Exercise 12.3 assuming that the list
was set up as a doubly linked list, with both next and prev

references.

2 myCodefllale

= 4 myCodeflate

o 5T T TR e S T P

Programming Projects. These prob-
lems require the design and imple-
mentation of Java programs. They
vary widely in level of difficulty.

Design and implement a set of classes that define various types
of reading marerial: books, novels, magazines, technical jour-
nals, textbooks, and so on. Include data values that describe var-
ious arttributes of the material, such as the number of pages and
the names of the primary characters. Include methods that are
named appropriately for each class and that print an appropriate
message. Create a main driver class to instantiate and exercise
several of the classes.

Design and implement a set of classes that keeps track of various
sports statistics. Have each low-level class represent a specific
sport. Tailor the services of the classes to the sport in question,
and move common artributes to the higher-level classes as
appropriate. Create a main driver class to instantiate and exer-
cise several of the classes.

to MyCodeMate. o S N

- 15

Contents

Preface vii
Chapter 1 Introduction 1
1.1 Computer Processing 2
Software Categories 3
Digital Computers 4
Binary Numbers 7

1.2 Hardware Components 10
Computer Architecture 11
Input/Output Devices ‘ 12

Main Memory and Secondary Memory 13

The Central Processing Unit 17

1.3 Networks 18
Network Connections 19
Local-Area Networks and Wide-Area Networks 20

The Internet 21

The World Wide Web 23
Uniform Resource Locators 24

1.4 The Java Programming Language 25
A Java Program 26
Comments 28
Identifiers and Reserved Words 30
White Space 32

1.5 Program Development 34
Programming Language Levels 35
Editors, Compilers, and Interpreters 37
Development Environments 39
Syntax and Semantics 40
Errors 41

