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Preface

This book is the continuation of [T13]. Our aim is twofold. First we develop the
theory of hybrid spaces L"A}, ,(R") which are between the nowadays well-known
global spaces A3, ,(R") with A € {B, F} and their localization (or Morreyfication)
’Afu (R™) as consndered in detail in [T13]. Spaces A’ (R") cover (fractional)
Sobolev spaces, (classical) Besov spaces and Holder-Zy gmund spaces, whereas local
Morrey spaces E’ (R™) are special cases of the local spaces LTA% q(]R") In [T13]
we applied the theory of spaces L" A3, 4(R™) to nonlinear heat equatlons and Navier-
Stokes equations. But this caused some problems which will be discussed in the
Introduction (Chapter 1) below. It came out quite recently that it is more natural in
this context to switch from local spaces L' A3, ,(R™) to hybrid spaces L"A3, ,(R").
This again will be illuminated in the Introduction below.
It is the second aim of this book to apply the theory of global spaces A4}, , (R")
and hybrid spaces L"A7, /(R") to the Navier-Stokes equations

ou+ U, VYu—Au+VP =0 inR” x (0,7), (0.1)
divu =0 inR” x (0,7), (0.2)
u(-,0) = ug in R”, (0.3)
in the version of

du—Au+Pdiviu®u) =0 inR" x (0,7), (0.4)
u(-,0) = ug in R", (0.5)

reduced to the scalar nonlinear heat equations
dv—Dvi—Av=0 in R" x (0, 7), (0.6)
v(-,0) = vy in R", (0.7)

where 0 < T < oo. Here u(x,1) = (u'(x,1),...,u"(x,1)) in (0.1)=0.5) is the un-
known velocity and P(x, ) the unknown (scalar) pressure, whereas v(x,t) in (0.6),
(0.7) 1s a scalar function,2 < n € N. Recall 9, = 9/0t,d; = d/dx; if j =1,..., n,

[(u, V)u Zufa uk k=1,..., n, (0.8)
divu =) 0;u’, VP =(P.....0.P). (0.9)

and by (0.2)
(u, Vu = div(u ® u), div(u @ w)* = > 0;(u’u"). (0.10)
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Furthermore, P is the Leray projector

®H = FE+ R R f1. k=1....n, 0.11)

Jj=1

based on the (scalar) Riesz transforms

Sk XV : / Yk
Rrgx)=1i = ¢, lim ——g(x—y)dy, xeR". (0.12
@ =i(58) W =clim | iret-)d (0.12)
In (0.4), (0.5) there is no need to care about (0.2) any longer. But if, in addition,
divug = 0 then divu = 0 in our context (mild solutions based on fixed point asser-
tions). In the scalar equation (0.6) we used the abbreviation

Df=>Y0,f (0.13)

j=1

As mentioned above we dealt in [T13] with the above equations in the context
of the global spaces Aj,,q (R™). Rigorous reduction of (0.1)—(0.3) to (0.4), (0.5) and

finally to (0.6), (0.7) requires a detailed study of the nonlinearity u +> u? and of
boundedness of Riesz transforms in the underlying spaces. In [T13] we tried to
extend this theory to some local spaces E’As (R"). But one needs some modifi-
cations, especially a replacement of the Rlesz transforms by some truncated Riesz
transforms. In the Introduction below we repeat the above considerations in greater
details and discuss in particular this somewhat disturbing (but unavoidable) point.
The hybrid spaces L"A%, , (R") preserve many desirable properties of the local spaces
E’A;‘q(R") but avoid the above-indicated shortcomings. They are between global
spaces and local spaces, which may justify calling them hybrid spaces. They coin-
cide with the well-studied spaces Aj;_tq(R"). T = % + . including the global spaces
A;’%(R") = A3, ,(R") as special cases.

Chapter 1 is the announced Introduction where we return to the above description
in greater details and with some references. Chapter 2 deals with local and global
Morrey spaces L7,(R"), L7, (R"), their duals and preduals and, in particular, with
the question whether the Riesz transforms Ry in (0.12) are bounded maps in these
spaces and what they look like. This chapter is self-contained and we hope that it
is of interest for researchers in this field. In Chapter 3 we develop the theory of the
hybrid spaces LA}, ,(IR") as needed for our above-outlined purposes. It comes out
that many basic propertles for the local spaces L"A47, ,(R") can be transferred easily
from [T13] to the hybrid spaces L"47, ,(R"). We concentrate on some new aspects
which will be crucial in the context described above. Similarly we carry over and
complement in Chapter 4 the theory of heat equations in the global spaces A4}, ,(R")
as developed in [T13] to the hybrid spaces L"A’, ,(R"). Chapter 5 deals with Navier-
Stokes equations especially in the version (0. 4) (0.5) in hybrid spaces. Then one
is in a rather comfortable position, clipping together related assertions of the two
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preceding chapters. But again we add a few new aspects. In particular, if the admitted
initial data are infrared-damped then the related local solutions of the Navier-Stokes
equations can be extended globally in time. These considerations will be continued
in Chapter 6 now specified to the global spaces A}, ,(R") and extended to the spaces
S} 4 A(R™) with dominating mixed smoothness. We discuss conditions for the initial
data in terms of Haar wavelets, Faber bases, and sampling in connection with the
hyperbolic cross, ensuring solutions of the Navier-Stokes equations which are global
in time. Furthermore we add some comments about the influence of large Reynolds
numbers. This chapter is largely independent of the preceding considerations.

We assume that the reader has a working knowledge about basic assertions for
the spaces 47, /(R"). But to make this book independently readable we provide re-
lated notation, facts and detailed references. Formulae are numbered within chapters.
Furthermore in each chapter all definitions, theorems, propositions, corollaries and re-
marks are jointly and consecutively numbered. References are ordered by names, not
by labels, which roughly coincide, but may occasionally cause minor deviations. The
bracketed numbers following the items in the Bibliography mark the page(s) where
the corresponding entry is quoted. All unimportant positive constants will be denoted
by ¢ (with additional marks if there are several ¢’s in the same formula). To avoid any
misunderstanding we fix our use of ~ (equivalence) as follows. Let / be an arbitrary
index set. Then

aj~b; for i€l (equivalence) (0.14)

for two sets of positive numbers {a; : i € I} and {b; : i € I} means that there are
two positive numbers ¢; and ¢; such that

cra; <b; <cya; foralli € I.
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Chapter 1
Introduction

In [T13] we dealt with the Navier-Stokes equations

oou+ U, Vu—Au+VP =0 in R” x (0, 00), (1.1)

divu =0 in R" x (0, 00), (1.2)

u(-,0) = ug in R”, (1.3)

where u(x,t) = (u'(x.t) ..... u”(x.t)) is the unknown velocity and P(x,t) the

unknown (scalar) pressure, 2 < n € N. Recall 9, = d/dt, 9, = 9/0x; if j =
1,...,n, and that the vector-function (u, V)u has the components

(u V)u Zufau k=1,...,n, (1.4)

whereas, as usual,

divu=»"du/, VP =(0P.....0.P). (1.5)
By (1.2) one has

(u, Vyu = div (u ® u), div (u ® u)k Za (u’ u®). (1.6)
Jj=1

This reduces (1.1)—(1.3), now in the strip R" x (0, T) with T > 0, to

ou—Au+Pdiviu®@u) =0 inR" x (0,7), (1.7)
u(-.0) = uy in R”. (1.8)

Here PP is the Leray projector,
n .
N =+ R Y R [ k=1,...n, (1.9)
j=1

based on the (scalar) Riesz transforms Ry,

Vv Vk
)(x) C,,llm/ —a 7 &(x — y)dy, x € R". (1.10)

€k
ng(r)—t( 40 Jiy 26 V1"

&%
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In (1.7), (1.8) there is no need to care about (1.2) any longer. But if in addition
divug = 0 then divu = 0 in our context (mild solutions based on fixed point argu-
ments). This well-known reduction of (1.1)—(1.3) to (1.7), (1.8) may also be found in
[T13, Section 6.1.3, pp. 196-198]. The vector equation (1.7), (1.8) can be reduced to
the nonlinear scalar heat equation

du(x,t)— Du*(x,t) — Au(x,t) =0, xeR" 0<t<T, (1.11)
u(x,0) = up(x), x e R", (1.12)

on the one hand and the mapping properties of R; and IP in the considered function
spaces on the other hand. Here

Df=Y9;f. (1.13)

J=1

We dealt with the Cauchy problem (1.11), (1.12) in the context of local spaces
E’A‘ (]R”) [T13, Theorem 5.24, p. 183], and of global spaces AS (IR") [T13, The-
orem 5 36, p-189], under the crucial assumption that the underlymg spaces

’As (R") and A (]R") are multiplication algebras. This is ensured if s + r > 0
for local spaces and s > n/p (and some limiting spaces with s = n/p) for global
spaces. The reduction of (1.7), (1.8) to (1.11), (1.12) requires in addition that the
Riesz transforms R; are linear and bounded maps in the underlying spaces. This
applies to the global spaces

A5 4 (RY), l<p<oo, 0<g<oo, seR, (1.14)

[T13, Theorem 1.25, p. 17] where the additional restriction 1 < g < oo for F-spaces
mentioned there is not necessary (as a consequence of Theorem 3.52 below). Then
one obtains satisfactory solutions for (1.7), (1.8) in the global spaces

A;_q(R”), l<p<oo, 1<g<oo, s>n/p, (1.15)

(and some limiting cases with s = n/p). We refer the reader to [T13, Theorem 6.7,
p-203] (where 1 < g < oo for F-spaces can be replaced by | < ¢ < oo as cov-
ered by Corollary 5.4 below). We could not find a counterpart in terms of the local
spaces L"Aj, ,(R™) and replaced as a substitute the Leray projector [P in (1.7) by the
truncated Leray projector P2 based on the truncated Riesz transforms

R,,,,kfzi(w lif‘lf) k=1,....n, (1.16)

where
v e CP°MR"), y(x)=0if|x|<1/2 and y(y)=1if|y|>1, (1.17)

[T13, pp. 199/200, Theorem 6.10, p.205]. Hence, one removes the infrared (or low
frequency) part of solutions of (1.7), (1.8). This point has also been discussed in
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[T13, p. 193, 199-201]. At that time we tried to find a way to deal with Navier-Stokes
equations or with (1.7), (1.8) also in the context of the local spaces E’A;,q(R"). But
it came out quite recently that the Riesz transform (1.10) cannot be extended from
D(R™) or S(R") to a linear and bounded operator acting in the local Morrey spaces
E;,(R”) =L'L,(R"),1 < p <o0,—n/p <r <0, [RoT13, Theorem 1.1(i)]. We
refer the reader also to Theorem 2.22 and Remark 2.23 below. On the one hand one
can take this observation as a justification of the above truncation. But on the other
hand one knows now that Ry are linear and bounded maps,

Re: LT(R") < LT(R") and L (R") < L,(R"), (118

1 < p<oo,—n/p <r <0, in the global Morrey spaces L’,(R") = L"L ,(R") and

in the completion of S(R") in L’ (R"), denoted as E;(R"), [RoT13, Theorem 1.1],
Theorem 2.22 and Remark 2.23 below. We refer the reader also to [RoT14]. It is
crucial for us and the main motivation of this book that (1.18) can be extended to
some hybrid spaces L"A}, ,(R") (being smaller than the local spaces E’A;,q(R”)).
As far as properties are concerned these spaces are between local and global spaces.
This may justify calling them hybrid spaces. In particular if

l<p<oo, 0<g<oo, seR and —n/p=<r <0, (1.19)
then one has by Theorem 3.52 below
R : L'A, (R") — L4}, ,(R"), ki= lsisss n, (1.20)

whereas the local spaces L£"4} ,(R") do not have this property. In addition
L"A3 ,(R™) are multiplication algebras if s +r > 0 (as their local counterparts
L A‘ 4(R")). Then one can extend a corresponding theory for the nonlinear heat
equatlons (1.11), (1.12), now in terms of the hybrid spaces L"A$ Q(R”) to the Navier-
Stokes equations. We tried to find in [T13] related assemons in the context of the
local spaces E’A;,q (R™). Now it is clear that this is impossible, but it is also clear
that one has a satisfactory theory with hybrid spaces L"A9, ,(R") in place of the lo-
cal spaces E’A;,q(R"). This extends corresponding assertions from A7, ,(R") =

L7243 (R") to LTAS, (R").
Chapter 2 deals mainly with local and global Morrey spaces L7, (R"), E;(R").

L;,(]R”), Z;(R”) and their (pre)duals. We follow closely [RoT13, RoT14] comple-
mented by

L;(R”) — L,(R", o), Ha =Welr, 1<p<oo, —n/p<r<D0,
(1.21)
where f17 is the Lebesgue measure and wq(x) = (1 + |x|?)%/2 with —n < a <
—n — rp is a Muckenhoupt weight w, € A,(R"). Then Ry g(x) according to (1.10)
is well-defined for x € R" a.e., also in its integral version. Finally we characterize
some of these spaces in terms of Haar wavelets. In Chapter 3 we introduce the hybrid
spaces L"Aj, ,(R") and collect some basic properties needed later on. This can be
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done largely in the same way as in [T13] for the local spaces E’A;‘q(R") mostly
without additional efforts. Only occasionally we add a further argument. We observe
that

’AS (]R" = A‘ ? (]R”) with 1 =

s (1.22)

S|y

1
P
for all admitted parameters s, p.q and —n/p < r < oo. The spaces A}, (R")
have been studied in great detail in the book [YSY10], the survey [Sicl2] and the
underlying papers. There one finds many other properties which will not be repeated
here. One may also consult [T13, pp. 38/39, Section 2.7.3, pp. 101-107]. There is one
crucial exception needed to prove (1.20). Then we rely on

ILf IL745, R ~ L f IL7A5 R+ 1| f 1L, R (1.23)

if

l<p<oo, 0<g<oo, §>0, —n/p<r<D0. (1.24)
Here L” A.i,‘ 4 (R") are homogeneous hybrid spaces (we do not need the homogeneous
spaces themselves but only their homogeneous norms in the context of the inhomoge-

neous spaces L’Asp‘q(R”)). For these homogeneous spaces (or their norms) one has
the Fourier multiplier assertion

NGB FVILTAS (@) < e sup  |x|®|[Dh)|)If IL7AS (RM (1.25)

la|<k,xeRn

of Michlin type with k € N sufficiently large (specified later on). This is essentially
covered by [YaY 10, Theorem 4.1, p. 3819]. We refer also to [YYZ12, Theorem 1.5,
p. 6] and the recent survey [YaY13a]. This can be applied to Ry with h = & /|&|.
Then (1.20) with (1.19) follows essentially from (1.23) and (1.18), (1.25). This may
be considered as the basic observation of what follows. Afterwards we return in
Chapter 4 to the nonlinear heat equations (1.11), (1.12) and transfer assertions avail-
able so far in the context of the local spaces £"4%5 (R") to their hybrid counter-
parts L"A7,  (R") (again essentially without any additional efforts) complemented by
some new observatlons In Chapter 5 we deal with the Navier-Stokes equations (1.7),
(1.8) in hybrid spaces L"A}, ,(R") extending a corresponding theory in [T13] for
the spaces Aj,,q (R™") = L‘"”’A;yq (R™) to L’A;q(R"). This extension applies not
only to the obtained assertions, but also to the underlying technicalities. In particular
(1.23) is the Morreyfied version of

L 145 R~ [Lf 143, ;R + [Lf 1L, R™)] (1.26)

if
0<p<oo, 0<gsoo, s>op=n(5—1),, (1.27)

[T92, Theorem 2.3.3, p.98]. Furthermore, (1.25) with

AS, J(RY) = L7 A4S (R™) (1.28)
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is covered by [T83, Theorem 5.2.2, p.241]. We refer the reader also to [T13, Theo-
rem 1.25, p. 17]. The final Chapter 6 is to some extent independent of the main bulk of
this book. It deals with Haar wavelets, Faber bases and sampling in the context of the
hyperbolic cross and spaces with dominating mixed smoothness and their relations to
solutions of Navier-Stokes equations, global in time, for large initial data.



Chapter 2
Morrey spaces

2.1 Introduction

This chapter deals with local Morrey spaces E;(R") and global Morrey spaces
L, (R") as well as their preduals HeL,(R"), H?L ,(R") in the framework of tem-
pered distributions S’(R"). This requires some restrictions for the parameters, typi-
cally 1 < p < oo. We are especially interested in duality properties and embeddings
between these spaces and in relations to distinguished Besov spaces. It is our intention
to present the material as self-contained as possible and to illuminate the somewhat
tricky (topological) background to a larger extent than usually done in the literature.
This requires that we include some basic material and a few so-called well-known
properties for which we could not find proofs in the literature. A typical example
is the claim that Morrey spaces are non-separable. We give a short proof. As a by-
product one obtains in one line the highly desirable (and well-known) assertion that
neither D(R"), nor S(IR"), nor distinguished Lebesgue spaces are dense in Morrey
spaces.

The second main aim of this chapter is the study of mapping properties of Cal-
derén-Zygmund operators in Morrey spaces and their preduals. The Riesz transforms
(1.10) are distinguished cases and the mapping property (1.18) will be of great service
for us in later chapters. It will be crucial to justify (1.20) based on (1.23), (1.25).

There are apparently no books or up-to-date comprehensive surveys dealing with
Morrey spaces and their (pre)duals especially in the limelight of Harmonic Analysis.
Basic material about Morrey-Campanato spaces may be found in [KJF77, Chapter
4], taken over to the new edition [PKJF13, Chapter 5]. We do not deal with the
numerous modifications and generalizations of (Campanato)-Morrey spaces. The in-
terested reader may consult the overview [RSS13] where one finds also references
to related classical and recent papers. In the last few years remarkable progress
has been made to raise Morrey spaces in Harmonic Analysis to the same level as
Lebesgue spaces. The most advanced paper in this direction is [AdX12], based on
[AdXO04], and the literature mentioned there spanning a period of several decades.
This chapter may also be considered as a contribution to these recent developments
providing some background material based on new proofs. In [T13, Chapter 3] we
dealt with Morrey-Campanato spaces L7,(R") in the larger context of so-called lo-
cal spaces L7A% _(R"). This will now be complemented, identifying global Morrey
spaces L', (R") with special hybrid spaces. As a consequence we characterize Morrey
spaces in terms of Haar wavelets.

In Section 2.2 we collect some definitions and comment on notation and the range
of the admitted parameters. Section 2.3 deals with embeddings of Morrey spaces in
the framework of (S(R"), S'(R")), complemented by the non-separability of L7 (R")



