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PREFACE

Commencing with Gauss, numerous mathematicians have contributed to the
study in the plane of the complex variable of the geometric relations between
the zeros of a polynomial and those of its derivative. More generally there have
been studied the relations between the zeros and poles of an arbitrary rational
function and the zeros of its derivative, and an elaborate body of material has
evolved which applies also to the critical points of an arbitrary analytic func-
tion, of Green’s function, and of other harmonic functions. It is the purpose of
the present volume to assemble and unify a large portion of this' material, to
make it available for study by the beginner or by the specialist, and for reference.

Results concerning even polynomials and rational funciions are far too numer-
ous to be completely treated here. The omission is not serious, for a general
survey of the entire field of the geometry of zeros of polynomials has recently
been written by Marden [1949]*, to which the reader may refer for broader
perspective in that field. The present material has been chosen to emphasize (i)
the determination of regions which are free from critical points (or alternately,
which contain all critical points), rather than to study mere enumeration of
critical points in a given region, and (ii) results for polynomials and rational
functions which can be extended to and furnish a pattern for the cases of more
general analytic functions and of harmonic functions. Our main problem, then,
is the approximate determination of critical points—approximate not in the
sense of computation which may be indefinitely refined, but in the sense of geo-
metric limitation of critical points to easily constructed regions, preferably
bounded by lines and circles. The point sets shown to contain the critical points
are naturally defined in terms of the zeros of a given polynomial, in terms of the
zeros and poles of a given rational or more general analytic function, and in
terms of suitable level curves of a given harmonic function. The theorem of
Lucas is typical in this field both as to general content and method of proof, and
occupies a central position in the entire theory. Although there are close connec-
tions with topology, our methods are mainly study of a field of force, use of
algebraic inequalities, analytic geometry, geometry of circles and plane curves,
circle transformations, potential theory, and conformal mapping. So far as
concerns rational functions, the methods are largely elementary, as seems to
be in keeping with the nature of the problems.

We use the term critical point to include both zeros of the derivative of an
analytic function and points where the two first partial derivatives of a harmonic
function vanish. It is hardly necessary to emphasize the importance of critical
points as such: 1) they are notable points in the behavior of the function, and

in particular for a harmonic function are the multiple points of level eurves and

* Dates in square brackets refer to the Bibliography.
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their orthogonal trajectories (curves of steepest descent); for an analytic func-
tion f(2) they are the multiple points of the loci | f(z) | = const and arg [f(2)] =
const; 2) for an analytic function f(z) they are the points where the conformality -
of the transformation w = f(2) fails; 3) they are conformal invariants, of impor-
tance in numerous extremal problems of analytic functions and in the study of
approximation by rational and other functions; 4) they are precfsely the posi-
tions of equilibrium in a potential field of force due to a given distribution of -
matter or electricity; 5) they are stagnation points in a field of velocity potential. .
We obtain incidentally in the course of our work numerous results concerning the
direction of the force or velocity corresponding to a given potential, but such -
results are secondary and are frequently implicit, being left to the reader for -
formulation. :

The term location of critical points suggests the term locus, and ordinarily we
determine an actual locus of critical points under suitable restrictions on the
given function. In the former part of the book we take pains to indicate this
property, but in the latter part leave to the reader the detailed discussion. Of
course our entire problem, of determining easily found regions free from (or
containing) critical points, is clearly a relative one, and it is a matter of judgment
how far the theory should be developed. Convenience, simplicity, and elegance
are our criteria, but the theory admits of considerable further development,
especially in the use of algebraic curves of higher degree.

A large part of the material here set forth has not been previously pubhahed
except perhaps in summary form. Thus Chapter V considers in some detail the
critical points of rational functions which possess various kinds of symmetry.
Chapters VII-IX present a unified investigation of the critical points of harmonic
functions, based on the study of a field of force due to a spread of matter on the
boundary of a given region, a boundary which may consist of a finite number
of arbitrary Jordan curves. The introduction and use of special loci called W-
curves adds unity and elegance to much of our entire discussion.

For help with manuscript and proof, the author is indebted to: Dorothy W.
Allen, Esther Blauer, Edward Block, Edward Carterette, Barbara P. Hunicke,
Robert Kendall, Marion B. Morris, and Elizabeth S. Walsh. The author is also
grateful for support from the Milton Fund of Harvard University, and to the
American Mathematical Society for accepting the book in its Colloquium Series.

J. L. WaLsm

Feb. 1949.
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CHAPTER I
FUNDAMENTAL RESULTS

§1.1. Terminology. Preliminaries. We shall be concerned primarily with
the plane of the complex variable z = & + 7y; the plane may be either the finite
plane (i.e. plane of finite points) or the extended plane (the finite plane with the
adjunction of a single point at infinity). The extended plane is often studied by
stereographic projection onto the sphere (Neumann sphere), on which the point
at infinity is no longer exceptional. When we study primarily polynomials, we
ordinarily deal with the finite plane except when we use an auxiliary inversion
in a circle; when we deal with more general rational functions, or with harmonic
functions, and with the non-integral linear transformation of the complex varia-
ble, we usually operate in the extended plane. We frequently identify a value
of z and the point representing it; thus the term non-real point refers to a point
representing a non-real value of z.

In the finite plane the term circle means simply circumference; in the extended
plane the use of the term is ordinarily broadened to include straight line.

§1.1.1. Point set terminology. A neighborhood of a finite point is the interior
of a circle with that point as center. A neighborhood of the point at infinity is
the exterior of a circle of the finite plane, point at infinity included.

If S is a given point set, the point P is an interior point of S if some neighbor-
hood of P contains only points of S, is a boundary point of S if every neighborhood
of P contains both points of S and points not in 8, and is an exterior point if
some neighborhood.of P contains no point of S. The point P is a limit point of
8 if every neighborhood of P contains an infinity of points of S. A set S is open
if every point of S is an interior point of S; a set S is closed if it contains its
limit points.

The closure of a set S consists of S plus its limit points; the closures of sets
R, 8, T are respectively denoted by E, 3, T.

A Jordan arc is the image of the closed line segment 0 < z < 1 under a one-
to-one continuous transformation, where continuity may be interpreted either
in the finite plane or on the sphere, the latter being equivalent to the extended
plane. A Jordan curve is similarly the image of a circumference under a one-to-
one continuous transformation. -.

A region is an open set of which any two points can be joined by a Jordan arc
consisting wholly of points of the set. A closed region is the closure of a region,
and need not properly be a region, but the term region may be somewhat loosely
applied to include closed region, and even arcs and points as degenerate closed
regions. A Jordan region is a region bounded by a Jordan curve.

A component of a closed set S is a closed subset which cannot itself be sepa-
rated, but which can be separated from all other points of S, by a Jordan curve
disjoint from S.

1



2 CHAPTER 1. FUNDAMENTAL RESULTS

A Jordan configuration is a point set consisting of a finite number of Jordan
arcs.

§1.1.2. Function-theoretic preliminaries. A polynomial in z of degree n is a
function which can be written as aez® + @:2"™ + .- + a., a0 X 0. A funection
f(2) is analytic at a finite point 2, if it possesses a continuous derivative at every
point of a neighborhood of 2, and is analytic at infinity if f(1/2) is analytic at
the origin.* A function is analytic in a region if it is analytic at every point of
that region, and is assumed single-valued unless otherwise specified. A function
f(2) is meromorphic in a region if it is analytic there except perhaps for poles. A
finite critical point of an analytic function f(z) is a point 2 at which the deriva-
tive f'(z) vanishes (this notation for derivative will be used consistently); the
multiplicity of z, as a critical point of f(z) is the multiplicity of 2z as a zero of
f'(2). The point at infinity is a critical point of an analytic function f(2), and of
order %, if the origin is a critical point of the function f(1/2), and of order k.
If an analytic function f(z) has a pole at infinity, that point is not a critical
point; if f(z) is analytic there, the point at infinity is a critical point of order k
if and only if f’(2) has a zero at infinity of order k + 2.

A few well known theorems are of central importance in the sequel.

PrinciPLE OF ARGUMENT. Let R be a region whose boundary B consists of a
Jinite number of mutually disjoint Jordan curves, and let the function f(z) be mero-
morphic in R, continuous on R + B in the closed neighborhood of B, different from
zero on B. As z traces B in the positive sense (i.e. so that the region R is situated
to the left of the forward moving observer), the net increase in arg [f(2)] 4s 2 times
the number of zeros minus the number of poles of f(z) interior to R.

An application of this principle is

Roucni’s THEOREM. Let the functions ¢(z) and ¥(z) be analytic interior to a
region R whose boundary B consists of a finite number of mutually disjoint Jordan
curves, and let the functions ¢(z) and ¥(z) be continuous in the closed region R,
with the relation | ¢(2) | >'|¥(2) | on B. Then the functions o(z) and o(2) + Vv(2)
have the same number of zeros in R.

Let 2o be a point of R at which at least one of the functions ¢(z) and e(2) + ¥(2)
vanishes; if 2 is a zero of ¢(2) + ¢(2) of order m but not a zero of ¢(2), then 2z,
is a zero of f(2) = [p(2) + ¥(2)]/w(2) of order m; if 2 is a zero of ¢(z) of order n
but not a zero of ¢(z) + ¥(2), then 2z is a pole of f(z) of order n; if z is a zero
of ¢(z) + ¥(2) of order m and a zero of ¢(z) of order n, then z is respectively
a zero of f(z) of order m — m, or a non-zero point of analyticity of f(z), or a
pole of f(z) of order n — m according as we have m > n, or m = n,orm < n.

* We assume f(1/z) to be defined for z -0 so as to be continuous there if possible; a
similar remark applies below at other isolated singularities. :
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Thus the number of zeros of ¢(z) 4+ ¥(z) in' R minus the number of zeros of
¢(z) in R equals the number of zeros of (z) minus the number of poles in R,
On the other hand, as z traces each component of B the point w = f(z) remains
interior to the circle |w — 1| = 1, so the net total change in arg w is zero: the
number of zeros of f(z) minus the number of poles of (z) in R is zero.

Hurwirz’s THEOREM. Let R be a region in which the functions f,(2) and f(2)
are analytic, continuous in R, with f(2) different from zero on the boundary B of R,
and let the sequence f,(2) converge uniformly to f(z) on R + B. Then for n greater
than a suitably chosen N, the number of zeros of f,(2) in R is the same as the number
of zeros of f(z) in R.

In the proof we assume, as we may do, that B consists of a finite number of
mutually disjoint Jordan curves. If § (> 0) is chosen so that | f(z) | > & on B,
we need merely choose N so that n > N implies | fu(2) — f(z) | < 6 on B, a,nd
apply Rouché’s Theorem. ;

Hurwitz’s Theorem applies not merely to the given region R, but also to a
neighborhood N (z)) whose closure lies in R of an arbitrary zero z of f(z) in R,
provided f(z) does not vanish on the boundary of N(z). If 2 is a zero of f(z)
of order m, and if N(z) contains no zero of f(z) other than z , then n greater
than a suitably chosen N implies that N (2)) contains precisely m zeros of f,(z).
It follows that if no function f,(z) vanishes identically, the limit points in R of
the zeros of the functions f.(z) in R are precisely the zeros of f(z) in R.

In particular, under the hypothesus of Hurwitz’s Theorem with f(z) not identi-
cally constant, the sequence fn(z) converges uniformly to f’(z) on any closed
subset of R, so if 2 is a finite or infinite critical point of f(2) in R of order m,
and if N(z) is a neighborhood of 2z to which B and all other critical points of
f(z) are exterior, then n greater than a suitably chosen N; implies that N (20)
contains precisely m critical points of f.(2); if no f.(z) is identically constant,
the limit points in R of the cmtlcal points of the f,(z) are precisely the critical
points of f(2) in R; if f'(z) and fn(z) sre continuous in & + B and different from
zero on B, and if f,,(z) converges uniformly in B + B, then for suitably large
index the function f,(z) has precisely the same total number of critical points
in R as does f(2).

The zeros of an algebraic equation are continuous functions of the coefficients:
if the variable polynomial Pi(2) of bounded degree approaches the fixed polynomial
P(z) (not identically constant) in the sense that coefficients of Pi(z) approach cor-
responding coefficients of P(z), then each zero of P(2) is approached by a number of
zeros of Pi(2) equal to its multiplicity; all other zeros of Pi(z) become infinite. More
explicitly, let

P(2) = az" + a2 '+ -+ + a t
be a polynomzal not identically constant, and let ?

Pi(z) = auz” + auz™ ' + - + am
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be a variable polynomial such that Gmy — an (m = 0,1,2, -+ ,n) as k becomes
infinite. Let ay , g , + -+, o, be the distinct zeros of P(2), and let ¢ > 0 be arbitrary,
| @i — a;] > 2¢, | @; | + € < 1/e. Then there exists M. such that k > M. implies
that each neighborhood | z — a; | < e contains precisely a number of zeros of Pi(z)
equal to the multiplicity of a; as a zero of P(z), and all other zeros of Pu(2) lie exterior
to the circle |z | = 1/e.

The sequence P(z) converges uniformly to the function P(z) in any closed
bounded region:

|P@) — Pu@) | S a0 — a | |2]|"+ |&r — an| - | 2] ™
+"'+‘aﬂ_anbl:

hence in the closed region | 2| < 1/¢; the conclusion follows from Hurwitz’s
Theorem applied simultaneously to | z | < 1/¢ and to all the regions |z —a;j| =
e. This method of proof is used by Bieberbach-Bauer [1928].

If we modify the hypothesis here so as to admit a polynomial P(z) which is
identically constant but not identically zero, the proof requires no modification,
and shows that k¥ > M. implies that all zeros of P:(z) lie exterior to bal t=81e

A real function u(z, y) or u(2) is harmonic in a finite region if there it is con-
tinuous together with its first and second partial derivatives, and satisfies
Laplace’s equation. The function u(2) is harmonic at a finite point if it is har-
monic throughout a neighborhood of that point, and is harmonic at infinity if
u(1/2) is harmonic at the origin. If u(z, y) is harmonic in a region R, it possesses
a conjugate v(z, y) there, which is single-valued if R is simply connected; the
function f(2) = u(z, y) + #v(z, y) is then analytic in R. A finite critical point
of u(z, y) is a point at which du/6x and du/dy vanish, that is, a critical point of
f(2); it is sufficient if the directional derivatives of u(z, y) in two essentially dis-
tinet (i.e. not the same nor opposite) directions vanish; the point at infinity is a
critical point of u(z, y) if and only if it isa critical point of f(z). The order of a crit-
ical point of u(z, y) is its oner as a critical point of f(2). If 20 = zo + 1Yo is a finite
critical point of u(z, y) of order m, then all partial derivatives of u(z, y) of orders
1,2, -+ -, m vanish there, but not all partial derivatives of order m + 1. ;

If a function f(z) is analytic at infinity, its derivative j*(z) has there a zero of
order at least two, and consequently if u(z, y) is harmonic at infinity its first
and second order partial derivatives vanish there; if /() has a zero there of order
k (> 2), then both f(z) and u(z, y) have critical points there, of order & — 2,
and conversely. A finite or infinite critical point z of an analytic or harmonic
function of order m retains the property of being a critical point of order m
under one-to-one conformal transformation of the neighborhood of 2 , even if a
finite 2z is transformed to infinity or an infinite 2z is transformed to a finite
point. '

If a sequence of functions u(z, y) harmonic in a region R converges uniformly
in R to the function u(z, y) harmonic but not identically constant in R, if (zo , %)
is a finite or infinite critical point of u(z, y) in R of order m, and if N(zo , y) is a
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neighborhood of (2o, y) whose closure lies in B and contains no other critical
point of u(z, y), then for k sufficiently large precisely m critical points of ux(z, )
lie in N (2o, yo), each critical point being counted according to its multiplicity.
The proof may be conveniently given by means of Hurwitz’s Theorem, for if
the functions v(z, y) and w(z, ¥) conjugate to u(z, y) and wi(z, y) are suitably
chosen, the functions w.(x, y) + i (z, y) are analytic in N (2, %) and converge
uniformly there to the function u(z, y) + w(z, y).

We state for reference without proof (which may be given by inequalities
derived from Poisson’s integral)

HarNAck’S THEOREM. Let u,(z, y) be a monotonically increasing sequence of
Junctions harmonic in a region K. Then either ua(z, y) becomes infinite at every
point of B or the sequence converges throughout R, uniformly on any closed set
intertor to R.

§1.2. Gauss’s Theorem. We commence our study of the location of critical
points by considering the simplest non-trivial funetions, namely polynomials,
Rolle’s Theorem of course applies to real polynomials as to any real function
possessing a derivative, and informs us that between two zeros of the function
lies at least one zero of the derivative. Beyond Rolle’s Theorem, the first general
result concerning the zeros of the derivative of an arbitrary polynomial seems
to be due to Gauss [1816]:

Gavuss’s THEOREM. Let p(z) be the polynomial (z — 1) (2 — as) -+ - (2 — a),
and let a field of force be defined by fixed particles situated al the points a; , oz, - - - ,
a, , where each particle repels with a force equal to the inverse distance. At a multipie
zero of p(z) are to be placed a number of particles equal to the muliiplicity. Then the
zeros of the derivative p'(2) are, in addition to the multiple zeros of p(z), precisely
the positions of equilibrium in this field of force.

The logarithmic derivative of p(z) is

) BolE) i o sach st s soprsad

p(2) z—oa1 22— az z2— an

The conjugate of 1/(z — a;) is a vector whose direction (including sense) is the
direction from a; to z and whose magnitude is the reciprocal of the distance from
a; to 2z, so thig vector represents the force at, the variable point z due to a single
fixed particle at a; . Every multiple zero (but no simple zero) of p(z) is a zero of
p'(2); every other zero of p’(z) is by (1) a position of equilibrium in the field of
force; every position of equilibrium is by (1) a zero of p'(z). Gauss’s Theorem is
established.

As a simple example here, we choose p(2) = (z — a;)™'(z — a2)™, mym, % 0.

Except for a; and oy, the only zero of p'(2) is given by
my me e —to ma

=0 p BT ek LB

z—a1+z—a2 G oy — 2 MQ,
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80 2 is the point (meay + myan) /(my + ms) which divides the segment aias in the
ratio my : my .

The particles of Gauss’s Theorem may be termed of unit mass; more generally
we may consider particles of arbitrary (not necessarily integral) positive mass,
repelling with a force equal to the quotient of the mass by the distance. Thus we
have the

Cororrary. If particles of positive masses py, wy, -+, p, are placed at the
respective points oy , s, -+ - , a, , then the positions of equilibrium in the resulting
Jield of force are precisely the zeros of the derivative of p2) = I}, (z ap)"*,
cxcept that oy is also a zero of p'(2) if we have up > 1.

Gauss’s Theorem is of such central importance in the sequel that if a poly-
nomial p(z) is given we often automatically set up the corresponding field of
force, and identify a zero of p(z) with a fixed particle.

§1.3. Lucas’s Theorem. If all the zeros of a polynomial p(z) are real, it follows
from Rolle’s Theorem that each interval J of the axis of reals bounded by suc-
cessive zeros of p(z) contains at least one zero of the derivative p’(z). If the

respective multiplicities of the zeros of p(z) aremy ,mg, -+ -, my , whose sum is n,
the corresponding multiplicities of the same points as zeros of p'(2) are the
positive numbers among the set m; — L, My ok N e R 1, whose sum is

n — k. There are £ — 1 intervals J each containing in its interior at least one
zero of p’(z), which has a totality of n — 1 zeros, so each interval J contains in
its interior precisely one zero of p’(2). All zeros of p’(2) lie in the smallest interval
of the axis of reals which contains the zeros of p(2). This consequence of Rolle’s
Theorem can be generalized to apply to an arbitrary polynomial.

'§1.3.1. Statement and proof.

Lucas’s THEOREM. Let p(z) be a polynomial* whose zeros are o1, @, @,
and let 11 be the smallest convex set on which those zeros lie. Then all zeros of the
derivative p'(z) also lie on I1. No zero of p'(2) lies on the boundary of 11 unless it is a
multiple zero of p(2), or unless all the zeros of p(2) are collinear.

Let pegs be placed in the z-plane at the points a1, az, +++, a, ; let a large
rubber band be stretched in the plane so as to to include all the pegs. If the rubber
band is allowed to contract so as to rest only on the pegs, and if it remains taut,
it will fit over the pegs in the form of the boundary of II. Thus if p(z) has but one
distinct zero, IT coincides with that zero; if the zeros of p(z) are collinear, IT is a
line segment; in any other case II is the closed interior of a rectilinear polygon,
called the Lucas polygon for p(2) or for the points «;. In every case the set IT

* Here and in corresponding places throughout the present work, the qualifying adjec-
tive non-constant is tacitly understood.
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is convex in the sense that if two points belong toII, so also does the line segment
joining them.

The set I can also be defined as the point set common to all closed half-planes
each containing all the oy .

If 2, is a point exterior to II, there exists a line L separating z, and II; in fact,
L may be chosen as the perpendicular bisector of the shortest segment joining
#z to II. In the field of force set up by Gauss’s Theorem, all particles lie on one
side of L; the force at 2, due to each particle has a non-vanishing component
perpendicular to L directed toward the side of L on which z lies. Consequently
2o cannot be a position of equilibrium. Moreover 2z, cannot be a multiple zero of
p(2), hence cannot be a zero of p'(2).

If 2 is a boundary point of II not a zero of p(z), and if not all the zeros of
p(z) are collinear, denote by L the line containing the side of the boundary of
II on which #, lies. Then one of the two half-planes bounded by L contains points

Fig. 1 illustrates §1.3.1 Lucas’s Theorem

ay, in its interior while the other half-plane does not. Again the force at z, due
to all the particles has a non-vanishing component perpendicular to L, so z
cannot be a position of equilibrium nor a zero of p’(2). The proof is complete.

Although Lucas’s Theorem follows at once from that of Gauss, there seems
to be no evidence that it was stated by Gauss. It is credited to F. Lucas [1874].
Since his proof, as D. R. Curtiss [1922] has remarked, it has been “discovered
and rediscovered, proved and reproved in most of the languages of Europe—and
all the proofs are substantially the same”.

In the present work we shall find numerous analogs and generalizations of
Lucas’s Theorem, many of them proved by this same method of considering at
a point outside of a certain locus the total force in the field set up by Gauss’s
Theorem, and showing that this total force cannot be zero. In particular we shall
make frequent use of the fact that a point z, cannot be a position of equilibrium
under the action of several forces if those forces are represented by vectors having
their initial points in z, and either their terminal points in an angle less than =
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with vertex 2o or their terminal points in an angle = with vertex 2z and at least
one terminal point interior to that angle.

§1.3.2. Complements. If the positions of the zeros of a variable polynomial
p(2) are fixed, and if the multiplicities of those zeros are permitted to take all
possible values, the totality of critical points of p(2) forms a countable point set S.
Lucas’s Theorem utilizes the positions of the zeros of a given polynomial but not
their multiplicities, and essentially asserts that S lies in II. However, we now
prove that II s the closure of S; in other words, if we wish to assign only a closed
set as one in which the critical points lie, Lucas’s Theorem is the best possible
result [Fejér, Toeplitz, 1925; the corresponding result for real polynomials with
non-real zeros (slightly weaker than §1.4.2 Theorem 1) had been previously
proved (1920a) by this same method by the present writer]:

THEOREM 1. Let II be the closed interior of the Lucas polygon for the points
Qp,Qp, ,a,..Letzobeapm'ntofl'l,andletaneighborhoodN(zo) of 2 be given.
Then for a suitable choice of the positive integers uy , us sy "y bn, the dertvative
' (2) of the polynomial p(2) = (z — a))*' (z — ap)*? --- (2 — an)™ has a zero in
N(zo).

We phrase the proof for the case that z, is not collinear with any two of the
points o ; the necessary modifications for the contrary case are obvious.* Then
2o lies interior to a triangle whose vertices are three of the given points a; ,
say a1, a2, and az. A non-degenerate triangle can be constructed whose
sides directed counterclockwise are respectively parallel to, and indeed suitable
positive multiples of, the veetors z0 — @;, 2 — a2, 2% — as. Thus we have

’ / ’ ’ ' ’ 22w
my(20 — an) + ma(2z0 — @) + ma(20 — a3) = 0, where my , m; , and m are positive,
whence with my = my/(20 — o) (% — a)

my e Mme mg

BHh—a B EH— &

= (),

where m;, m,, and m; are positive, If the positive rational numbers 7, y T2, T3 8D~

proach respectively my , ms , m; , and the positive rational numbers r, s TGy 2~ % s T
approach zero, then a zero z of the function

1 T2 Tn
(1) z-—a1+z'—ag+ +z—a,

approaches 2z , and hence for suitable choice of 7, rs, --- , 7, this zero of (1)
lies in N(2o). If m is the least common multiple of the denominators of the latter
numbers 7 , we need merely set u; = mr; to complete the proof.

* It is not sufficient to assume here merely that z, is an interior point of II; for instance
if p(2) is the polynomial z¢ — 1, the point z = 0 is interior to II but not interior to & triangle
whose vertices are zeros of p(z). - 7



§1.4. JENSEN’S THEOREM 9

The Corollary to Gauss’s Theorem (§1.2) yields an extension of Lucas’s
Theorem:

CoROLLARY. If II is the closed interior of the Lucas polygon for the points
a1, az, *** ,an, then II contains the zeros of the derivative of the function

(e — a)'(zc — a)” -+ (2 — @)™,

where all the i are positive. No zero of the derivative lies on the boundary of II
unless it 18 a point oy with ur > 1, or unless all the points oy are collinear.

Another general property of the zeros of the derivative of a polynomial is
expressed in

TaroreM 2. The zeros of a polynomial p(z) of degree greater than unity and the
zeros of 118 dertvaiive p’(z) have the same center of gravity.

The center of gravity of the zeros of
p@) =2"+ae" + --- + an
is —ay/n, as is the center of gravity of the zeros of
P@ =n""+ @O —Da"" + -+ + tua.

The significance of Theorem 2 lies especially in the fact that any line L through
the center of gravity of a finite set of points bounds two closed half-planes each
containing one or more of those points; either all the points lie on L, or at least
one point lies interior to each of the half-planes.

Under the conditions of Lucas’s Theorem, the center of gravity of the o lies
in 11, and is an interior point of II unless all the a; are collinear. Any point 2
of 11 has the property that any line through 2z, bounds two closed half-planes
each containing one or more of the a; ; this property is shared by no point exterior
to IL. If 2, is an interior point of II, then at least one ay lies on each side of every
line through 2 .

§i.4. Jensen’s Theorem. For a real polynomial p(z), non-real zeros occur in
pairs of conjugate imaginaries; this symmetry may enable us to improve Lucas’s
Theorem as applied to p(z). Using as diameter the segment joining each pair of
conjugate imaginary zeros of p(z), we construct a circle, which we shall call a
Jensen circle. We shall prove [Jensen, 1913; proof due to Walsh, 1920a]:

JenseN’s THEOREM. Each non-real zero of the derivative p’'(2) of a real poly-
nomsal p(z) lies on or within a Jensen circle for p(z). A non-real point 2, not a multi-
ple zero of p(2) nor interior to o Jensen circle for p(z) is a zero of p'(z) only if p(2)
has no real zeros and 2 lies on all Jensen circles.



