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Preface

The main purpose of this hook is to give an account of the fractional
and integral classification problem in the theory of quadratic forms over
the local and global fields of algebraic number theory. The first book to
investigate this subject in this generality and in the modern setting of
geometric algebra is the highly original work Quadratische Formen und
orthogonale Gruppen (Berlin, 1952) by M. ErcHLER. The subject has made
rapid strides since the appearance of this work ten years ago and during
this time new concepts have been introduced, new techniques have been
developed, new theorems have been proved, and new and simpler proofs
have been found. There is therefore a need for a systematic account of the
theory that incorporates the developments of the last decade.

The clessification of quadratic forms depends very strongly on the
nature of the underlying domain of coefficients. The domains that are
really of interest are the domains of number theory: algebraic number
fields, algebraic function fields in one variable over finite constant fields,
all completions thereof, and rings of integers contained therein. Part One
introduces these domains via valuation theory. The number theoretic
and function theoretic cases are handled in a unified way using the
Product Formula, and the theory is developed up to the Dirichlet Unit
Theorem and the finiteness of class number. It is hoped that this will be
of service, not only to the reader who is interested in quadratic forms,
but also to the reader who wishes to go deeper into algebraic number
theory and class field theory. In Part Two there is a discussion of topics
from abstract algebra and geometric algebra which will be used later in
the arithmetic theory. Part Three treats the theory of quadratic forms
over Jocal and global fields. The direct use of local class field theory has
been circumvented by introducing the concept of the quadratic defect
(which is needed later for the integral theory) right at the start. The
quadratic defect gives, in effect, a systematic way of refining certain
types of quadratic approximations. However, the global. theory of
quadratic forms does present a dilemma. Global class field theory is still
so inaccessible that it is not possible merely to quote results from the
literature. On the other hand a thorough development of global class
field theory cannot be included in a book of this size and scope. We
bave therefore decided to compromise by specializing the methods of
global class field theory to the case of quadratic extensions, thereby
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obtaining all that is needed for the global theory of quadratic forms.
Part Four starts with a systematic development of the formal aspects
of integral quadratic forms over Dedekind domains. These techniques
are then applied, first to solve the local integral classification problem,
then to investigate the global integral theory, in particular to establish
the relation between the class, the genus, and the spinor genus of a
quadratic form.

It must be emphasized that only a small part of the theory of
quadratic forms is covered in this book. For the sake of simplicity we
confine ourselves entirely to quadratic forms and the orthogonal group,
and then to a particular part of this theory, namely to the classification
problem over arithmetic fields and rings. Thus we do not even touch
upon the theory of hermitian forms, reduction theory and the theory of
minima, composition theory, analytic theory, etc. For a discussion of
these matters the reader is referred to the books and articles listed in the
bibliography.’
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Prerequisites and Notation

If X and Y are any two sets, then X C Y will denote strict inclusion,
X — Y. will denote the difference set, X — Y will denote a surjection
of X onto Y, X = Y an injection, X ~» Y a bijection, and X - Y
an arbitrary mapping. By ‘“‘almost all elements of X' we shall mean
“all but a finite number of elements of X',

N denotes the set of natural numbers, Z the set of rational integers,
@ the set of rational numbers, R the set of real numbers, P the set of
positive numbers, and C the set of complex numbers.

We assume a knowledge of the elementary definitions and facts of
general topology, such as the concepts of continuity, compactness,
completeness and the product topology.

From algebra we assume a knowledge of 1) the elements of group
theory and also the fundamental theorem of abelian groups, 2) galois
theory up to the fundamental theorem and including the description of
finite fields, 3) the rudiments of linear aigebra, 4) basic definitions
about modules.

If X is any additive group, in particular if X is either a field or a

vector space, then X will denote the set of non-zero elements of X. If H
is a subgroup of a group G, then (G : H) is the index of H in G. If E/F
is an extension of fields, then [E: F] is the degree of the extension. The
characteristic of F will be written y(F). If « is an element of E that is
algebraic over F, then irr (¥, «, F) is the irreducible monic polynomial in
the variable x that is satisfied by « over the field F. If E; and E, are
subfields of E, then E,F, denotes the compositum of E, and E, in E.
If E/F is finite, then Ng/p will denote the norm mapping from E to F;
and Sg/p will be the trace.
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Part One

Arithmetic Theory of Fields

Chapter I

Valuated Fields

The descriptive language of general topology is known to all mathe-
maticians. The concept of a valuation allows one to introduce this
language into the theory of algebraic numbers in a natural and fruitful
way. We therefore propose to study some of the connections between
valuation theory, algebraic number theory, and topology. Strictly
speaking the topological considerations are just of a conceptual nature
and in fact only the most elementary results on metric spaces and
topological groups will be used; nevertheless these considerations are
~ essential to the point of view taken throughout this chapter and indeed
throughout the entire book.

§ 11. Valuations

§ 11A. The definitions
Let F be a field. A valuation on F is a mapping | | of F into the real
numbers R which satisfies

(V) led >0 if <0, [0]=0
(Ve Bl = o] - 18]
(V) e+ Bl < Jo| + 18]
for all «, 8 in F. A mapping which satisfies (V;), (Vy) and

(Ve) Je+ Bl < max(jal. |B))

- will satisfy (V,) and will therefore be a valuation. Axiom (V) is called
the triangle law, axiom (V) is called the strong triangle law. A valuation
" which satisfies the strong triangle law is called non-archimedean, a
valuation which does not satisfy the strong triangle law is called archi-
medean. Non-archimedean valuations will be used to describe certain
properties of divisibility in algebraic number theory.
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The mapping « - || is a multiplicative homomorphism of F into
the positive real numbers, and so the set of images of F forms a multi-
plicative subgroup of R. We call the set

|F| = {le| €R|a € F}
the value group of F under the given valuation. We have the equations

=1, [-a =], le¥ =],

| |l — 1811 S e~ Bl

Every field F has at least one valuation, the trivial valuation obtained
by putting |a| =1 for all & in F. Such a valuation satisfies the strong
triangle law and is therefore non-archimedean. A finite field can possess
only the trivial valuation since, if we let ¢ stand for the number of
elemerits in F, we have

leff-1= | =|lj=1  Va¢cF.

Any subfield F of the complex numbers C can be regarded as a
valuated field by restricting the ordinary absolute value from C to F.
Conversely, it will follow from the results of § 12 that every field with an
archimedean valuation is obtained essentially in this way. A valuated
field which contains the rational numbers @ and which induces the
ordinary absolute value on @ must be archimedean since {1 + 1| =2> 1.

Now a few words about the topological properties of the valuated
field F. First we notice that F can be regarded as a metric topological
space in a natural way: define the distance between two points « and §
of F to be |« — B|. If we take this topology on F and the product topology
on F x F, then it is easily seen by elementary methods that the mappings

(@ B) ~a+p and (x f) —af

of F X F into F are continuous. So are the mappings

and also

€+ —a and o - !

of F into F and of F into F , respectively. These four facts simply mean,
in the language of topological groups, that F is a topological field. Hence
the mappings

(g, 009, - .., 0) >0y + g+ "+ ay
and

(o, Olgy v« o) Oy} Oy tg. .. Gy
of Fx+++x F into F are continuous. Hence a polynomial with coef-

ficients in F determines a continuous function of F X -++ X F into F;
and a rational function is continuous at any point of F x--+ X F at
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which its denominator is not zero. The inequality | |a] — [og] | = & — ot}
shows that the mapping
o - |
of F into R is continuous. :
The limit of a sequence and the sum of a series can be defined as it is
usually defined in a first course on the calculus. We find that if &, — «
and B, — B as #n - oo, then

Oy fnr—atp, @ fnraf
glor—ol if a0
fetn] > lat] .

Similarly if J) a; and J; &, converge, then so do
1 1

Swrw=FmzIn.

1 1
The terms of any convergent series must tend to 0.

The closure @ of a subfield G of F is again a subfield of F. For we can
find &, « and g, f with «, and §,in G whenever « and f are given
in @; then '

a -+ ﬂ=lim(“n+ ﬂn) EG-

Hence @ is closed under addition, Similarly with multiplication and
inversion. Hence @ is a field.

Closely related to the concept of a valuation is the concept of an
analytic map. An analytic map is an isomorphism ¢ of the valuated
field F onto a valuated field F’ such that |p«| = |« holds for all « in F.
In other words, an analytic map preserves the valuation as well as the
algebraic structure. An analytic map ¢ is therefore a topological iso-
morphism between the topological fields F and F’. Suppose now that ¥’
- is just any abstract field, but that F is still the valuated field under
discussion. Also suppose that we have an isomorphism ¢ of F onto F'.
We can then define a valuation on F’ by putting || = |¢~! §| for all
B in F'. When we perform this construction we shall say that ¢ bas
carried the valuation from F to F’. Clearly the valuation just defined
makes @ analytic.

We conclude this subparagraph with an important example. Consider

" the rational numbers Q and a fixed prime number p. A typical € @ can
be written in the form
m
= (%)

1*

TSR R AR
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with m and # prime to p. Do this with each « and put
1\é
|l = (}5‘) ’

It is easy to show that this defines a non-archimedean valuation on Q.
To say that « is small under this valuation means that it is highly
divisible by p. (Here is our first glimpse of the connection between
valuations and number theory; we shall return to this example in a more
" general setting in Chapter IIL.)

§ 11B. Non-archimedean valuations

. 11:1. 4 valuation on a field F is non-archimedean if and only if it 4s
bounded on the natural integers of F.

Proof. We recall that the natural integers in an arbitrary field F are
the finite sums of the form 1 4 - - - + 1. We need only do the sufficiency.
Thus we are given a fixed positive bound M such that |m| £ M holds
for any natural integer s in F. Then

loe + Bi* = |{xx + B)™
=l @ ot B
= |1 e+ IO fedm=2 18] + - - - + 1] |B]?
= M {jalr+ Jafr-t B+ 00 - + | B

< M (n + 1) {max (|«], | B)}".
“Hence

e + Bl = M¥*(n + 1)¥/" max (|o, |B]) -
- If we let # —-— oo we obtain the result. qed

This result has two immediate consequences. First, a field of charac-
teristic » > 0 can have no archimedean valuations. Second, a valuated
extension field E of F is non-archimedean if and only if F is non-archi-
. medean under the induced valuation. >

11:2. Principle of Domination. I# a non-archimedean field we have

loey+ -+ = + aa| = ||
if ol < || for A> 1

Proof. It suffices to prove | + f| = || when |a| > |f]|. We have
| laf = |—F + & + 8] = max (8], e+ B},
"and so ja| < |« + B]. But .
@ + B} = max (laf , |B]) = |« .
Hence |a 4 8] = |o] . q.e.d.
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11:2a. Suppose that 3] «; is convergent. If loy| < || for A> 1, theh
1

IIZ' AR

11:3. Let E[F be an algebraic extension of fields. Suppose a valuation
on E induces ithe trivial valuation on F. Then the valuation is trivial on E.

Proof. For suppose that the given valuation is non-trivial on Z. Then
we can find « € E with |a] > 1. Let us write

gl vt g, e+ a,=0

with all a; in F. Now all [a,| are either 0 or 1 since the valuation is trivial
_on F. And |o®| > |af| whenever # > ¢. Hence

o] = |a®+ @ a” =1+ -+ + a

by the Principle of Domination. Hence |o®| = 0, and this is absurd.
qg.e. d.
We shall see later in Chapter ITI that the above result does not hold

if the extension E[F is transcendental.

§ 11C. Equivalent valuations

Consider two valuations | |, and | |; on the same field F. We say that
| 1 and | |, are equivalent valuations if they define the same topology
on F. It is clear that equivalence of valuations is an equivalence relation
on the set of all valuations on F.

11:4. Let | |; and | |, be two valuations on the same field F. Then the
following assertions are equivalent:

(1) The two valuations are equivalent,

(2) |eh<le|ay<1,

(3) There is a positive number @ such that |a|8 = ja|, for all « in F.

Proof. (1) = (2). On grounds of symmetry it is enough to consider
an « in F with {«]; < 1 and to prove that |aj,< 1. Let

N ={xcF||al,<1}.

This set N is a neighborhood of 0 under the topology induced by either
valuation. Now o], = ||} can be made arbitrarily small by choosing #
large enough, in particular we can choose an # such that o#¢ N, But then
|l < 1. And so |y < 1. :

(2) = (3). By taking inverses we deduce from (2) that ja},> 1 if and
only if |a;> 1. Hence |af;= 1if and only if jxlg= 1. In particular, if
one of the valuations is trivial then so is the other. We may therefore
assume that neither valuation is trivial. .
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Take a, in F with 0 < |a|;< 1. Then 0 < ||, < 1 by hypothesis.
Hence we have {a|,= [aol{ where

= log als/log |l > 0 .

We claim that |a|y= lal‘? for all & in F. For suppose if possible that there
is an a for which |a|; and |«|¢ are not equal. Replacing « by its inverse if
necessary allows us to assume that |a|,< ||{. Now choose a rational
number m/n with # > 0 such that

letla < foxol5™ = [atol§™™ < |xls -
This gives

joamfoPls<1 and |omfal,> 1
which denies our hypothesis. Hence our supposition about « is false.
Hence (3) follows.

(8) = (1). This part is clear. q.e.d.
11:4a. Suppose | |, is non-trivial. Then | |, is equsvalent to | |y if
la’1< 1= lal=< 1.

Proof. If |x|,> 1, then |a|;> 1 by taking inverses. It is therefore

enough to prove
lah=1=>lajp=1.

Choose § € F with 0 < |8],< 1. Then
Bl < 1= aBla< 1= [aff |Bla< 1.

It follows from the last inequality, by letting # —— oo, that Ja|,< 1.
Replace a by o. This gives [al,z 1. Hence |afg= 1. g.e. d.
11:4b. Tke trivial valuation is equivalent to stself and itself alone.

11:5. Let | |, and | |4 be two equivalent valuations on a field E and let F
be an arbitrary subfield of E. Suppose the two valuations induce the same
non-trivial valuation on F. Then | |y and | |4 are equal on E.

Proof. We have a positive number ¢ such that |«|¢ = |al, for all & -
in E. Choose ay€ F with

0 < orgly= |argla< 1.
Then |op)¢ = |oty),. Hence g = 1. g.ce.d.

Consider the valuation | | on our field F and let g be any positive
number. We know that | [¢, if it is a valuation, will be equivalent to | .
Of course | |¢ need not be a valuation at all; for instance the ordinary
absolute value on @ with g > 1 gives

|1+ 1je= 20> 2 = [1]e+ {1]e.

However | |2 is a valuation whenever 0 < g < 1. To see this we observe
that | + Ble< (a| + |B|)e; it therefore suffices to prove that

(laf + [Ble = |ade+ |Ble.
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But

: il 181 ol _\e 18 _\e
=T+ Y T+ = (Ial+lﬁl) +(|«|+|ﬁ) ’
since 0 < ¢ =< 1. So it is true.

In the non-archimedean case things are simpler. The strong triangle
law must obviously hold for | e if it holds for | [, éven if p is greater
than 1. Hence | |e is a valuation if | | is non-archimedean and ¢ > 0.
It is clear that | |¢ is non-archimedean if and only if | | is.

§ 11D. Prime spots

Consider a field F. By a prime spot, or simply a spot, on F we mean
a single class of equivalent valuations on F; thus a spot is a certain set
of maps of F into R. Consider a prime spot p on F. Each valuation
| | € p defines the same topology on F by the definition of a prime spot.
We call this the p-adic topology on F. If p contains the trivial valuation
(in which case it can contain no other) we call p the trivial spot on F.
In the same way we can define archimedean and non-archimedean spots.
If p is non-trivial it will contain an infinite number of valuations. Two
spots on F are equal if and only if their topologies are the same.

Suppose ¢: F >— F’ is an isomorphism of a field ¥ with a spot p onto
an abstract field F’. It is easily seen that there is @ unique spot q on F’
which makes o topological: the existence of ¢ is obtained by letting ¢ carry
some valuation in p over to F’, and the uniqueness of q follows from the
fact that both ¢ and ¢~ will be topological. In this construction we say
that o carries the spot p to F’. The unique spot on F’ that makes ¢
topological will be written

pe.

To each | |, € p there corresponds a valuation | |,0 € p? such that

|Blor=lo"2Bl, YBEF,

namely the valuation obtained by carrying | |, to F'.

11:6. Let F and G be two fields provided with p-adic and q-adic lopol-
ogies respectively, Let ¢ be a topological isomorphism of F onto G. Then
q=p°. And for each | | € p there is a | | € q which makes o analytic.

Proof. Clearly q = p® by definition of p?. Then | |; is simply the
valuation | [, defined above. q.e.d.

Let P be a prime spot on an extension E of F. Each valuation in P
induces a valuation on F, and all valuations of F that are obtained
from 9 in this way are equivalent. Hence P determines a unique spot
p on F. We say that P induces p, or that P divides p, and we write

Blp.
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Whenever we refer to the spot P on F we shall really mean that spot p
on F which is divisible by 9. Here the P-adic topology on E induces the
p-adic topology on F. We refer to this induced topology as the P-adic
topology on F.

Now consider a set of prime spots S on F and another set T on E.
We say that T divides S and write T'|S if the spot induced on F by each
spot P in T is in S. It is clear that there is an absolutely largest set of
spots T on E which divides a given set S on F; we then say that T fully
divides S and we write T'||S. One often uses the same letter S to denote
the set of spots on E which fully divides the given set S on F.

§ 11E. The Weak Approximation Theorem

11:7. Let | ; (1 = A < n) be a fintle number of imequivalent non-
trivial valuations on a field F. Then there is an o € F such that |o),> 1 and
lda<lfor2 i< n

Proof. If » = 1 it is simply the fact that | |, is non-trivial. Next let
n = 2. Since | |, and | |, are inequivalent we can find 4, ¢ in F such that

Bh<1, jolaz 1, [chz=z1, |da<1.

Then a = ¢/b does the job.

We continue by induction to #. First choose b with |b|;> 1 and
lba<1(2 = A< n—1), then ¢ with |c}y> 1 and |c],< 1. If {b],< 1 we
are through. If [b],= 1, form ¢4’ and observe that for sufficiently large
values of » we have

leby> 1, jebf<l (25 A< m);

take o = cb". Finally consider |b|,> 1. Using the fact that 1 + &"—— 1 if
|8} < 1 we easily see that

cb* el ifA=1 or A=mn
1402 0 H2gLA1sn~-1.
This time take a = ¢b7/(1 + &) with a sufficiently large 7. q.e.d.

11:8. Theorem. Let | |; (1 < A = n) be a finite number of inequivalent
non-trivial valuations on a field F. Consider n field elements oy (1 < A< n).
Then for each g > O there is an o € F such that |« — ayz<efor1 < A £ n.

Proof. For each 1 (1 < ¢ < n) we can find 5,¢F such that |b,|,;> 1
and [b,{,< 1 when A == 7. If we let # -~ oo we see that

by {l under | |;

T+877)0 under || if A=t4 .
Hex_lce
£ /3
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under the topoiogy defined by | [, Then « = ¢, with a sufficiently large »
is the & we require. q.e. d.

§ 11F. Complete valuations and complete spots

Consider the distance function d{e, f) = |« — | associated with the
valuation | | on F. We can follow the language of metric topology and
introduce the concept of a Cauchy sequence and completeness with
respect to d(«, f). Completeness of | | then means, by definition, that
every Cauchy sequence converges to a limit in F.

11:9. Example, We have already mentioned that the terms of any
convergent series over a valuated field must tend to 0, If F is a field
with a complete non-archimedean valuation there is the following
remarkable converse: every infinite series whose terms tend to 0 is

convergent. For if we form the partial sums 4,,...,4,, ... of 2 o

we see from the strong triangle law that
lAm"' Aln’ -S- max (lan-i-li LI |aml) ’

hence the partial sums form a Cauchy sequence, hence Z o has a limit

in F.

Let p be a spot on the field F. We say that F is complete at p, or
simply that F is complete, if there is at least one complete valuation in p.
Because of the formula | [¢ = | [, relating equzva.lent valuations we see
that if F is complete at p, then every valuation in p is complete.

By a completion of a field F at one of its spots p we mean a composite
object consisting of a field E and a prime spot P on E with the followmg
properties:

1. E is complete at P,

2. F'is a subfield of E and P|p,

8. Fisdensein E.

‘We shall often shorten the terminology and just refer to a completion
E of a given field F; this will of course mean that we have a certain
prime spot p on F in mind and that E is really a composite object
consisting of the field £ and a prime spot P on E.

11:10. Example. A complete field is its own completion. It has no
other completion.

11:11. Example. Consider the trivial spot p on F. Here every Cauchy
sequence has the form

Oy oo vy Oy Oy v v vs &

and this converges to «. Hence F is complete.



