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This book is designed to serve as a textbook and reference for programming in the
Java language. Although it does include programming techniques, it is organized
around the features of the Java language rather than any particular curriculum of
programming techniques. The main audience I had in mind when writing this book
was undergraduate students who have not had extensive programming experience
with the Java language. As such, it would be a suitable Java text or reference for
cither a first programming course or a later computer science course that uses Java.
This book is designed to accommodate a wide range of users. The beginning chap-
ters are written at a level that is accessible to beginners, while the boxed sections of
those chapters serve to quickly introduce more experienced programmers to basic
Java syntax. Later chapters are still designed to be accessible, but are written at a level
suitable for students who have progressed to these more advanced topics.

The Java coverage in this book is very complete including extensive coverage of
new version 5.0 features.

CHANGES IN THIS EDITION

If you have not used the first edition of this text, you can skip this subsection. If you
have used the first edition, this subsection will tell you how this second edition dif-
fers from the first.

For instructors, the transition from the first to this second edition is easy. You can
teach the same course, presenting basically the same topics in the same order with
only very minor changes in the material covered. The largest required change is that
this edition uses the Scanner class, new in Java version 5.0, for keyboard input. This
edition does include a number of additional topics that offer an opportunity to add
to an existing course. The most significant of the new topics is generic programming
using type parameters. For the most part, the new topics are a direct result of the
changes and additions in version 5.0 of Java. V
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This edition has added the following topics and updates, all new with Java version
5.0: the new Scanner class for keyboard and file input; extensive coverage of generic
programming using type parameters; coverage of the Swing library has been updated
to accommodate 5.0 changes; automatic boxing and unboxing; the new for-each loop
(also called the enhanced for-loop); enumerated types; static imports; variable length
argument lists for methods; covariant return types.

This edition also updates the programming projects and adds numerous new pro-
gramming projects.

NO NONSTANDARD SOFTWARE

Only classes in the standard Java libraries are used. No nonstandard software is used
anywhere in the book.

JAVA 5.0 COVERAGE

This edition has been updated and expanded to include full coverage of Java features
new in version 5.0. Treatment of keyboard input and of file input has been updated to
use the new Scanner class. A new chapter on generic programming has been added.
Other chapters have been updated to use generic programming. In addition, the fol-
lowing topics and updates, all new with Java version 5.0, have been added: coverage of
the Swing library has been updated to accommodate 5.0 changes; automatic boxing
and unboxing; the new for-each loop (also called the enhanced for-loop); enumerated
types; static imports; variable length argument lists for methods; covariant return

types.

OBJECT-ORIENTED PROGRAMMING

This book gives extensive coverage of encapsulation, inheritance, and polymorphism
as realized in the Java language. The chapters on Swing GUIs provide coverage of and
extensive practice with event driven programming. A chapter on UML and patterns
gives additional coverage of OOP-related material.

FLEXIBILITY IN TOPIC ORDERING

This book allows instructors wide latitude in reordering the material. This is impor-
tant if a book is to serve as a reference. It is also in keeping with my philosophy of
writing books that accommodate themselves to an instructor’s style rather than tying
the instructor to an author’s personal preference of topic ordering. With this in mind,
each chapter has a prerequisite section at the start of the chapter; it explains what
material must be covered before doing each section of the chapter. Starred sections,
which are explained next, further add to flexibility.
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STARRED SECTIONS

Each chapter has a number of starred (¥%) sections, which can be considered optional
sections. These sections contain material that beginners might find difficult and that
can be omitted or delayed without hurting the continuity of the text. It is hoped that
eventually the reader would return and cover this material. For more advanced stu-
dents, the starred sections should not be viewed as optional.

ACCESSIBLE TO STUDENTS

It is not enough for a book to present the right topics in the right order. It is not even
enough for it to be clear and correct when read by an instructor or other expert. The
material needs to be presented in a way that is accessible to the person who does not
yet know the material. Like my other textbooks that have proven to be very popular
with students, this book was written to be friendly and accessible to the student.

SUMMARY BOXES

Each major point is summarized in a short boxed section. These boxed sections are
spread throughout each chapter. They serve as summaries of the material, as a quick
reference source, and as a way to quickly learn the Java syntax for features the reader
knows about in general but for which he or she nceds to know the Java particulars.

SELF-TEST EXERCISES

Each chapter contains numerous Self-Test Exercises at strategic points in the chapter.
Complete answers for all the Self-Test Exercises are given at the end of each chaprer.

OTHER FEATURES

Pitfall sections, programming tip sections, and examples of complete programs with
sample 1/O are given throughout each chaprer. Each chapter ends with a summary sec-
tion and a collection of programming projects suitable to assign to students.

CODEMATE ONLINE TUTORIAL RESOURCE

CodeMate is an online resource that provides tutorial help and evaluation of student
work on programming projects. The code displays and selected programming projects
in this edition have been fully integrated into CodeMate. Using CodeMate, a student
can get hints on programming projects, write and compile the project, and receive
feedback on how to address compiler errors messages, and all this can be done over the
Internet from any computer with Internet access. Instructors can track each student’s
progress in the course’s programming projects. A complimentary subscription is
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offered when an access code is bundled with a new copy of this text. Subscriptions
may also be purchased online. For more information on CodeMate, go to

http://www.aw-bc.com/codemate

SUPPORT MATERIAL
The following support materials are available to all users of this book:
u Self-check quizzes.

m Source code from the book.

= A free copy of the Java version 5.0 Software Development Kit, which includes a
Java 5.0 compiler.

The following resources are available to qualified instructors only. Please contact your
local sales representative or send e-mail to aw.cse@aw.com for access information:

Instructor access to Addison-Wesley’s CodeMate

Instructor’s Manual with Solutions

Computerized Test Bank

a PowerPoint Slides

cbD
The CD that accompanies this book contains:

a The source code for all the code displays in the book.

m A copy of the Java version 5.0 Software Development Kit, which includes a Java 5.0
compiler. )

m A trial copy of the TextPad integrated development environment (IDE) for
Windows.

OBTAINING JAVA

The CD that accompanies this book contains a free copy of the Java version 5.0 Soft-
ware Development Kit, which includes a Java 5.0 compiler. You also need an IDE
(integrated development environment) or at least an editor. There are a number of
elaborate IDEs available. However, we've found that a simple IDE works best for
beginning student since it presents fewer distractions from the task of designing pro-
grams. We recommend the TextPad environment or any similarly simple IDE. A free
trial copy of TextPad for Windows is included on the CD that accompanies this book
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Summary Boxes :
These boxes provide a brief synopsis of
major points in each chapter, both
highlighting and reinforcing core concepts
throughout the book. Readers will find
them to be a handy, quick reference for
Java syntax and features. : ‘

I¢ sounds as though Java byte-code just adds an extra step in the process. Why not
write compilers thar eranslare direcely f
ticular computer?
ever, Java byte-code makes your Java program very porcable. Afer you compile your
Java program into byte-code, you can use that byte-code on any computer. When you
run your program on another type of computer, you do not need to recompile ic. This
means that you can send your byte-code over the Intemet to another computer and
have it easily run on chat computer. This is ane of the reasons Java s good for Internet
applications. OF course, every kind of computer must have its own byre-code iner-
precer. but thesc interpreters are simple programs when compared to a compler.

m-nmmmmmmummamuummuu
muum(mmm‘nk-quumm-h

preter that

rom Java to the machine language for your par-
? That is what is done for most ather programming languages. How-

I
l! quammvmmqummmmmm

e

LIS BRER - e

1. Ifthe following statement were used in a Java program, ic would causc something

be written to the screen. What would it cause to be written to the screen?

System.out.printin("Java is not a drink.");

o

ing to the screen:

I like Java.
You like tea.

lowing to the screen when run:
Hello World!

Note that you do not need to fully understand all the details of the program in
arder to write the program. You can simply follow the model of the program in
Display 1.1.

- Give a statement or statements that can be used in a Java program to wite the follow-

3. Write a complete Java program thar uses System.out.printin to output the fol-

ANSWERS TO SELF-TEST EXERCISES

Al the merhods in Display 19.1 wlar action that you want the
. method t perform. you can n cmpty body
2 The smaller window gocs away but the langer window stags. This is the defaule action
for the close-window burton and we did not change it for the smaller window
3. dispose

4. The import starcmeats are the same as in Display 19.2. The rest of the definicio

he lows. This definition is in the file Windowt {stenerDemo3 on the accompanying CD.

SRR |

Self-Test Exercises and
Answers

Strategically placed within each
chapter, Self-Test Exercises offer readers
an opportunity to assess their mastery
of key topics. . i Ay

Detailed answers are provided at the
end of the chapter.




2.6  Keyboard Input Demonstration

import jova.util.Sconner; = s

public class ScannerDemo
{
public stotic void main(String[] args) Pl
{ -
Scanner keyboard = new Scanner(System.in);
System.out.println(“Enter the number of pods followed by");
System.out.println(“the number of peas in a pod:");

int number0fPods = keyboard.nextInt()ime—
int peasPerPod = keyboard.nextInt(); —e—

int totalNumberOfPeas = number(fPods=*peasPerPod;

System.out.print(numberOfPods + " pods and “);
System.out.printin(peasPerPod + " peas per pod.");
System.out.println(“The total number of peas

+ totalNumberOfPeas);

Tips |
These helpful hints instruct readers on best
programming practices. The author
explains the rationale behind these ‘
practices and includes suggestions on how

to execute them effectively. ‘

keyboard

Code Displays

There are abundant code listings
throughout the text. Informal
comments that explain potentially
confusing or difficult portions
appear alongside the code. Key lines
are highlighted and color-coding
visually distinguishes comments
(green) and reserved words (blue).

i

Prompt for Input

Always prompt the user when your program needs the user to input some data, as in the follow-
ing example

System.out.printin("Enter the number of pods followed by");
System.out.printin("the number of peas in a pod:™);

Echo Input

You should always echo input. That is, you should write 1o the screen all input that your pro-
gram receives from the keyboard. This way, the user can check that the input has been entered
correctly. for example, the following two statements from the program in Display 2.9 echo the
values that were read for the number of pods and the number of peas per pod:

System.out.print(numberOfPods + pods and ")

)
System.out.printin(peasPerPod + " peas per pod.");

1t might seem that there is no need to echo input, because the user's input is automatically dis-
played on the screen as the user enters it. Wiy bother to write it to the screen a second time? The
input might be incorrect even though it looks correct. For example, the user might type a comma
nstead of a decimal point or the letter O in place of a zero. Echoing the input can expose such
problems.




Dealing with the Line Terminator, '\n"
mmmmqmmmmwwqumqmmm
ever the last keyboard reading left off. For example, suppose you create an object of the class
Scanner as follows:

Scanner keyboard = new Scanner(System.in)

and suppose you continue with the following code:

int n = keyboard.nextInt();
String sl = keyboard.nextLine();
String s2 = keyboard.nextLine();

Now, assume that the input typed on the keyboard is:

2 heads ore
better thon
1 head.

This sets the value of the variable n to 2, that of the variable s1to " heads are”, and that of
the variable s2 to "better than".

saluManmpmbmmiiuMMinpulmmud

2
heads are better than
1 head. i

vwmmmnhzo]ntohmloz.thtumof'lnvnmblesuo “heads are bet-
ter than", and that of the variable s2 to "1 head. . But that is not what happens.

Wlmlyhapprmhﬂmm”mo[ﬂnnmhnlsu!wz.'lmoﬂhvmbslum
to the empty string, and that of the variable s2 to "heads are better than". The method
mxnzmmzmmmmmm'o;-mmm'\n',sommmu.m
mnwbnmdsmmvfmllmmucohmmz.MBangmmonmatlm
(except for '\n"), s0 nextLine returns the empty string. The second invocation of nextLine
begins on the next line and reads "heads are better than".

When combining different methods for reading from the keyboard, you sometimes have to
Indudnnnmimncmonnfnextunetogavidoﬂhemnhlm(mg«ﬂ'ﬂuﬂ An')
This is illustrated in Display 2.8,

A GUI with a Label and Color

Display 17.6 shows a class for GUls with a label and a background colar. We have already discussed the use of
wmﬁm‘mmumumﬂumm'ﬂm button works. " The label
s created as foliows:

JLabel alabel = new JLabel(“Close-window button works.™);

mhulun«dmhnrr—wmuummu:hawmumngnmmmym&
.

add(alabel) ;
mmmco\ommnuwyummmmum
setDefaultCloseOperation(JIFrame. EXIT_ON.CLOSE) ;

muw-y,mmmummmmmmmmMhutuvw-hum
Mwwmw‘llhbuMnkﬂ!yw.b.ﬂh-ldlch"mwhnmvimol
the class Coloredwindow, then the entire program ends and all windows go sway.

Note that we set the lite of the IF rame by making it an argument to super ather than an argument to
setTitle. This is another common way to set the title of a JFrame.
uyummmwlwmmmouphynu,mmmmﬂum—mn
qnum.h-mm.mmbuymmmmuwm.




CHAPTER SUMMARY

Late hinding (also called dynamic binding) means thar the decision of which ver- |
sion of a method is appropriate is decided at run time. Java uses lare binding,

Chapter Summaries
Polymorphism means using the process of late binding to allow differenc objects to This end'of'Chapter tool provides a
use different method actions for the same method name. Polymorpbism is essentially Concise OVeWiew Of the fundamenta'

another word for late binding.

You can assign an object of a derived class o a variable of its base class (or any | concepts presented in the chapter.

ancestor class), but you cannot do the reverse.

If you add the modifier final to the definition of a2 method, that indicates that the

method may not be redefined in a derived class. If you add the modifier final to
the definition of a class, that indicates that the class may not be used as a base class
to derive other classes.

An abstract method serves as a placeholder for a method that will be fully defined

in a descendent class.

An abstract class is a class with one or more abstract methods.

An abstracr class is designed to be used as a base class to derive other classes. You
cannot create an object of an abstract class type (unless it is an object of some con-
crete descendent class).

An abstract class is a type. You can have variables whose type is an abstract class and
you can have parameters whose type is an abscract type.

N

Programming Projects
Found at the end of each chapter, PROGRAMMING PROJECTS
Programming Projects challenge readers QR L T i it

To access these please go to: www.aw-be.com/codemate

to design and implement a Java L. InProgeamiing Project 3 from Chispect 7.the A en cliss wag sewritten o ue loheiit
ance. The rewritten Alien class should be made abstract since chere will never be a
program to solve a problem. Example need to create an inscance of i, only it derived cesss. Change thisto an abstrce class

and also make the getbDomage method an abstract method. Test the class from your

solutions for all programming projects natn method to easure that it seill operazes s expected.

are available to instructors.

CodeMate

CodeMate brings end-of-chapter
programming projects to life.
- Working online, students can view,
|
|
|

compile, run, and edit select
programming problems as well as all

m 7. Define a class named MultiTtemSale that represents a sale of mulriple items of type
Sale given in Display 8.1 {or of the types of any escendent classes). The class

MultiItemSale will have an insta

riable who: hich will be used

ype is Sale[]

as a partially filled array. There will also be anorther instance variable of type int thar | code Iistings from the textbook. Best

keeps track of how much of this array is currently used. The exact decails on methods
and other instance variables, if any. are up to you. Use this class in a program that | ’ .
ohiins Wpin i peRST s S ek e e ] of all, CodeMate’s tutorial feedback

and computes the tocal bill for the list of items sold

helps students work through
common programming errors,
improving their programming skills.
An automated gradebook allows
instructors to assign CodeMate
problems and track student progress
online.
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