() Eoeamit tuaRgsRA iy

Addison
\\l‘.\‘ltﬁ\

;\r AWERFHHRS

e - AFTERK, ML EEEE

st tJTE =
IN:21% } AVA AREHE, RERRAZA

(%) Walter Savitch &

AEREE R

E b AT - HEHRESER

Java 58 F£ 4§ 2
(% 2 hie B2ERRD)

(%) Walter Savitch 2%

AERFE R
E| Y

ABSOLUTE Java

WALTER SAVITCH

University of California, San Diego

PEARSON

Addison
Wesley

Boston San Francisco New York
London Toronto Sydney Tokyo Singapore Madrid
Mexico City Munich Paris Cape Town Hong Kong Montreal

English reprint edition copyright © 2006 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA

UNIVERSITY PRESS.

Original English language title from Proprietor’s edition of the Work.

Original English language title: Absolute Java, Second Edition, by Waiter Savitch, Copyright © 2006
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Pearson
Education, Inc."

This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the
Special Administrative Region of Hong Kong, Macao SAR and Taiwan).

BB ENARE Pearson Education, Inc.iE A B LR FE H R HR & 1T,

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong

Kong SAR and Macao SAR).
XRF i ARKIEER (REFEPEEFE. B TFNTHRXMHEETHX) HERT-

LR R EERA R EES EBS: 01-2005-5287

REALEF , BEN A 5T, ¥R A% 010-62782989 13501256678 13801310933
A HIHEMH Pearson Education (348 HAREH) MABIIRE , THREETLBHE,

?#ﬁg@%? ((%PZ)%% ENAR) = Ab X)B4k A e E

Java 553 p = lute Java, S d Edition, / # Savitch, W.)3&. — 1A, -
:Ibﬁ"(:m?%iﬁjg’?"ﬂjm?i,) < solute Java, Secon ition, /(3€) (Savitc) FCEN A

H o2 B, o HEHBESEAR

ISBN 7-302-13210-0

P.Jees . g% 1L Java i85 — PRI — 86— L V. TP312
o [AR A B 18 CIP ¥ 4% 5(2006) 5 064845 5

H AR & WEHEXFEHRE o HE: JEEUEEREFVERE
: http://www. tup. com. cn B % . 100084
B #l. 01062770175 ZE RS 010-62776969
XREHE: Ot
HMigi: AAE L
N Rl & HEKEOR
1T &: —miHREITARA R
: BHERIE SRR RATRE
. 185 x230 E[I5K: 78.25 =¥ . 1001 TF
: 2006 459 A5 1 B 2006 45 9 A1 IENRI
. ISBN 7-302-13210-0/TP - 8349
. 1 ~3500
: 109.00 JL(& 1 30 #D)

S 8 a0 SF B b

Acquisitions Editor Matt Goldstein

Project Editor Katherine Harutunian
Composition and Art Argosy Publishing

Copyeditor Ginny Kaczmarek

Proofreader Kim Cofer

Indexer Larry Sweazy

Text and Cover Design Leslie Haimes/Joyce Cosentino Wells
Cover Photo © 2005 Ryan McVay/Photodisk
Design Manager Joyce Cosentino Wells

Prepress and Manufacturing Caroline Fell

Production Assistant Sarah Bartlett

Media Producer Bethany Tidd

Access the latest information about Addison-Wesley titles from our World Wide Web site:
hetp://www.aw-bc.com/computing

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

The programs and applications presented in this book have been included for their instructional
value. They have been tested with care, but are not guaranteed for any particular purpose. The pub-
lisher does not offer any warranties or representations, nor does it accept any liabilities with respect
to the programs or applications.

Library of Congress Cataloging-in-Publication Data
Savitch, Walter J., 1943-
Absolute Java / Walter Savitch -- 2nd ed.
p. cm.
Includes bibliographical references and index.
ISBN 0-321-33024-2
1. Java (Computer program language) I. Title.
QA76.73.]385265 2005
005.13’3--dc22
2005002885

Copyright © 2006 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher. Printed in the United States of America.

ISBN 0-321-33024-2
345678910-QWT-080706

CH+iin D LR il
(55500

Walter Savitch# & 55 %

ISBN 7-302-11818-3

5 2% S K1 0y i 0l LLiE B
Walter Savitch#ie AN A) B
U PN T80k . B Shiy 221
i 1 {27 51 i LM (SRR (IR
MR i 7 () ANSTAS O by tf ik 50T
MmN E ST FE, [G
B —HWMNE, B g b B b
Ve, BB afEIm i, A on .
MR T A S O B Sl S T
REETIEAE5HE, A4 s

“KELS AARANT BH
(C++@ 6 2t f A2 AR it) 48 &2f 12]
ATH, CHRBTTAUGIF &,
COEHRAS, MAAFATELL LR
ek) :

——Syed Ali, # %% 3 x%,6 A%

“Walter SavitchX @, & F, #ust—44
HEMT Il ®, Hbo B 4o AiENE LG
B s AMED, "

Ken Morris, A A4 Mz%m, Adb+F

This book is designed to serve as a textbook and reference for programming in the
Java language. Although it does include programming techniques, it is organized
around the features of the Java language rather than any particular curriculum of
programming techniques. The main audience I had in mind when writing this book
was undergraduate students who have not had extensive programming experience
with the Java language. As such, it would be a suitable Java text or reference for
cither a first programming course or a later computer science course that uses Java.
This book is designed to accommodate a wide range of users. The beginning chap-
ters are written at a level that is accessible to beginners, while the boxed sections of
those chapters serve to quickly introduce more experienced programmers to basic
Java syntax. Later chapters are still designed to be accessible, but are written at a level
suitable for students who have progressed to these more advanced topics.

The Java coverage in this book is very complete including extensive coverage of
new version 5.0 features.

CHANGES IN THIS EDITION

If you have not used the first edition of this text, you can skip this subsection. If you
have used the first edition, this subsection will tell you how this second edition dif-
fers from the first.

For instructors, the transition from the first to this second edition is easy. You can
teach the same course, presenting basically the same topics in the same order with
only very minor changes in the material covered. The largest required change is that
this edition uses the Scanner class, new in Java version 5.0, for keyboard input. This
edition does include a number of additional topics that offer an opportunity to add
to an existing course. The most significant of the new topics is generic programming
using type parameters. For the most part, the new topics are a direct result of the
changes and additions in version 5.0 of Java. V

iv

Preface

This edition has added the following topics and updates, all new with Java version
5.0: the new Scanner class for keyboard and file input; extensive coverage of generic
programming using type parameters; coverage of the Swing library has been updated
to accommodate 5.0 changes; automatic boxing and unboxing; the new for-each loop
(also called the enhanced for-loop); enumerated types; static imports; variable length
argument lists for methods; covariant return types.

This edition also updates the programming projects and adds numerous new pro-
gramming projects.

NO NONSTANDARD SOFTWARE

Only classes in the standard Java libraries are used. No nonstandard software is used
anywhere in the book.

JAVA 5.0 COVERAGE

This edition has been updated and expanded to include full coverage of Java features
new in version 5.0. Treatment of keyboard input and of file input has been updated to
use the new Scanner class. A new chapter on generic programming has been added.
Other chapters have been updated to use generic programming. In addition, the fol-
lowing topics and updates, all new with Java version 5.0, have been added: coverage of
the Swing library has been updated to accommodate 5.0 changes; automatic boxing
and unboxing; the new for-each loop (also called the enhanced for-loop); enumerated
types; static imports; variable length argument lists for methods; covariant return

types.

OBJECT-ORIENTED PROGRAMMING

This book gives extensive coverage of encapsulation, inheritance, and polymorphism
as realized in the Java language. The chapters on Swing GUIs provide coverage of and
extensive practice with event driven programming. A chapter on UML and patterns
gives additional coverage of OOP-related material.

FLEXIBILITY IN TOPIC ORDERING

This book allows instructors wide latitude in reordering the material. This is impor-
tant if a book is to serve as a reference. It is also in keeping with my philosophy of
writing books that accommodate themselves to an instructor’s style rather than tying
the instructor to an author’s personal preference of topic ordering. With this in mind,
each chapter has a prerequisite section at the start of the chapter; it explains what
material must be covered before doing each section of the chapter. Starred sections,
which are explained next, further add to flexibility.

Preface v

STARRED SECTIONS

Each chapter has a number of starred (¥%) sections, which can be considered optional
sections. These sections contain material that beginners might find difficult and that
can be omitted or delayed without hurting the continuity of the text. It is hoped that
eventually the reader would return and cover this material. For more advanced stu-
dents, the starred sections should not be viewed as optional.

ACCESSIBLE TO STUDENTS

It is not enough for a book to present the right topics in the right order. It is not even
enough for it to be clear and correct when read by an instructor or other expert. The
material needs to be presented in a way that is accessible to the person who does not
yet know the material. Like my other textbooks that have proven to be very popular
with students, this book was written to be friendly and accessible to the student.

SUMMARY BOXES

Each major point is summarized in a short boxed section. These boxed sections are
spread throughout each chapter. They serve as summaries of the material, as a quick
reference source, and as a way to quickly learn the Java syntax for features the reader
knows about in general but for which he or she nceds to know the Java particulars.

SELF-TEST EXERCISES

Each chapter contains numerous Self-Test Exercises at strategic points in the chapter.
Complete answers for all the Self-Test Exercises are given at the end of each chaprer.

OTHER FEATURES

Pitfall sections, programming tip sections, and examples of complete programs with
sample 1/O are given throughout each chaprer. Each chapter ends with a summary sec-
tion and a collection of programming projects suitable to assign to students.

CODEMATE ONLINE TUTORIAL RESOURCE

CodeMate is an online resource that provides tutorial help and evaluation of student
work on programming projects. The code displays and selected programming projects
in this edition have been fully integrated into CodeMate. Using CodeMate, a student
can get hints on programming projects, write and compile the project, and receive
feedback on how to address compiler errors messages, and all this can be done over the
Internet from any computer with Internet access. Instructors can track each student’s
progress in the course’s programming projects. A complimentary subscription is

vi

Preface

offered when an access code is bundled with a new copy of this text. Subscriptions
may also be purchased online. For more information on CodeMate, go to

http://www.aw-bc.com/codemate

SUPPORT MATERIAL
The following support materials are available to all users of this book:
u Self-check quizzes.

m Source code from the book.

= A free copy of the Java version 5.0 Software Development Kit, which includes a
Java 5.0 compiler.

The following resources are available to qualified instructors only. Please contact your
local sales representative or send e-mail to aw.cse@aw.com for access information:

Instructor access to Addison-Wesley’s CodeMate

Instructor’s Manual with Solutions

Computerized Test Bank

a PowerPoint Slides

cbD
The CD that accompanies this book contains:

a The source code for all the code displays in the book.

m A copy of the Java version 5.0 Software Development Kit, which includes a Java 5.0
compiler.)

m A trial copy of the TextPad integrated development environment (IDE) for
Windows.

OBTAINING JAVA

The CD that accompanies this book contains a free copy of the Java version 5.0 Soft-
ware Development Kit, which includes a Java 5.0 compiler. You also need an IDE
(integrated development environment) or at least an editor. There are a number of
elaborate IDEs available. However, we've found that a simple IDE works best for
beginning student since it presents fewer distractions from the task of designing pro-
grams. We recommend the TextPad environment or any similarly simple IDE. A free
trial copy of TextPad for Windows is included on the CD that accompanies this book

Preface Vi

ACKNOWLEDGMENTS

Numerous individuals have contributed invaluable help and support in making this
book happen: My former editor Susan Hartman at Addison-Wesley first conceived of
the idea for this book and worked with me on the first editions; My current editor
Martt Goldstein provided support and inspiration for getting this second edition
reviewed, revised, and out the door; Katherine Harutunian, Bethany Tidd, Sarah Bar-
tlett, Joyce Wells, Michelle Brown, and the other fine people at Addison-Wesley also
provided valuable support and encouragement.

Meghan James and Daniel Rausch at Argosy Publishing worked tirelessly, expertly,
and cheerfully to get the book through production on schedule. Patty Mahtani headed
the production team at Addison-Wesley. She was an inspiration as well as an indis-
pensable help. Working with Patty transformed drudgery into joy.

The following reviewers provided corrections and suggestions for this second edi-
tion. Their contributions were a great help. I thank them all. In alphabetical order they
are:

Kevin Bierre Rochester Institute of Technology
Stephen Chandler NW Shoals Community College
Massoud Ghyam University of Southern California
Nigel Gwee Louisiana State University

Sridhar P. Nerur The University of Texas at Arlington
David Primeaux VA Commonwealth University
Riyaz Sikora The University of Texas at Arlington
Ronald F. Taylor Wright State University

The following reviewers provided corrections and suggestions for the first edition of
this book. Their contributions continue into this edition. I thank them all. In alpha-
betical order they are:

Jim Adams Chandler-Gilbert Community College
Gerald W. Adkins Georgia College & State University
Dr. Bay Arinze Drexel University

Prof. Richard G. Baldwin Austin Community College

Jon Bjornstad Gavilan College

Adrienne Decker University of Buffalo

Arthur Geis College of DuPage

Judy Hankins Middle Tennessee State University

Chris Howard DeVry University

viii

Preface

Eliot Jacobson
Balaji Janamanchi

Suresh Kalathur

Dr. Clifford R. Kettemborough

Frank Levey

Xia Lin

Mark M. Meysenburg
Hoang M. Nguyen
Prof. Bryson R. Payne
W. Brent Seales

Jeff Six

Xueging (Clare) Tang
Natalie S. Wear

Dale Welch
\Wook—Sﬁng Yoo

University of California, Santa Barbara
Texas Tech University

Boston University

IT Consultant and Professor

Manatee Community College

Drexel University

Doane College

Deanza College

North Georgia College & State University
University of Kentucky

University of Delaware

Governors State University

University of South Florida

University of West Florida

Gannon University

Kenrick Mock (University of Alaska) updated the programming projects including
many new projects and new solutions to old problems. I thank him for a truly excel-
lent job.

A special thanks to Rick Ord who reviewed the entire first edition and the updated
sections of this second edition. He provided detailed and very helpful suggestions for
improvements in the book. His insights contributed greatly to just about every part of

the book.

Walter Savitch
htep://www-cse.ucsd.edu/users/savitch/
wsavitch@ucsd.edu

Summary Boxes :
These boxes provide a brief synopsis of
major points in each chapter, both
highlighting and reinforcing core concepts
throughout the book. Readers will find
them to be a handy, quick reference for
Java syntax and features. : ‘

I¢ sounds as though Java byte-code just adds an extra step in the process. Why not
write compilers thar eranslare direcely f
ticular computer?
ever, Java byte-code makes your Java program very porcable. Afer you compile your
Java program into byte-code, you can use that byte-code on any computer. When you
run your program on another type of computer, you do not need to recompile ic. This
means that you can send your byte-code over the Intemet to another computer and
have it easily run on chat computer. This is ane of the reasons Java s good for Internet
applications. OF course, every kind of computer must have its own byre-code iner-
precer. but thesc interpreters are simple programs when compared to a compler.

m-nmmmmmmummamuummuu
muum(mmm‘nk-quumm-h

preter that

rom Java to the machine language for your par-
? That is what is done for most ather programming languages. How-

I
l! quammvmmqummmmmm

e

LIS BRER - e

1. Ifthe following statement were used in a Java program, ic would causc something

be written to the screen. What would it cause to be written to the screen?

System.out.printin("Java is not a drink.");

o

ing to the screen:

I like Java.
You like tea.

lowing to the screen when run:
Hello World!

Note that you do not need to fully understand all the details of the program in
arder to write the program. You can simply follow the model of the program in
Display 1.1.

- Give a statement or statements that can be used in a Java program to wite the follow-

3. Write a complete Java program thar uses System.out.printin to output the fol-

ANSWERS TO SELF-TEST EXERCISES

Al the merhods in Display 19.1 wlar action that you want the
. method t perform. you can n cmpty body
2 The smaller window gocs away but the langer window stags. This is the defaule action
for the close-window burton and we did not change it for the smaller window
3. dispose

4. The import starcmeats are the same as in Display 19.2. The rest of the definicio

he lows. This definition is in the file Windowt {stenerDemo3 on the accompanying CD.

SRR |

Self-Test Exercises and
Answers

Strategically placed within each
chapter, Self-Test Exercises offer readers
an opportunity to assess their mastery
of key topics. . i Ay

Detailed answers are provided at the
end of the chapter.

2.6 Keyboard Input Demonstration

import jova.util.Sconner; = s

public class ScannerDemo
{
public stotic void main(String[] args) Pl
{ -
Scanner keyboard = new Scanner(System.in);
System.out.println(“Enter the number of pods followed by");
System.out.println(“the number of peas in a pod:");

int number0fPods = keyboard.nextInt()ime—
int peasPerPod = keyboard.nextInt(); —e—

int totalNumberOfPeas = number(fPods=*peasPerPod;

System.out.print(numberOfPods + " pods and “);
System.out.printin(peasPerPod + " peas per pod.");
System.out.println(“The total number of peas

+ totalNumberOfPeas);

Tips |
These helpful hints instruct readers on best
programming practices. The author
explains the rationale behind these ‘
practices and includes suggestions on how

to execute them effectively. ‘

keyboard

Code Displays

There are abundant code listings
throughout the text. Informal
comments that explain potentially
confusing or difficult portions
appear alongside the code. Key lines
are highlighted and color-coding
visually distinguishes comments
(green) and reserved words (blue).

i

Prompt for Input

Always prompt the user when your program needs the user to input some data, as in the follow-
ing example

System.out.printin("Enter the number of pods followed by");
System.out.printin("the number of peas in a pod:™);

Echo Input

You should always echo input. That is, you should write 1o the screen all input that your pro-
gram receives from the keyboard. This way, the user can check that the input has been entered
correctly. for example, the following two statements from the program in Display 2.9 echo the
values that were read for the number of pods and the number of peas per pod:

System.out.print(numberOfPods + pods and ")

)
System.out.printin(peasPerPod + " peas per pod.");

1t might seem that there is no need to echo input, because the user's input is automatically dis-
played on the screen as the user enters it. Wiy bother to write it to the screen a second time? The
input might be incorrect even though it looks correct. For example, the user might type a comma
nstead of a decimal point or the letter O in place of a zero. Echoing the input can expose such
problems.

Dealing with the Line Terminator, '\n"
mmmmqmmmmwwqumqmmm
ever the last keyboard reading left off. For example, suppose you create an object of the class
Scanner as follows:

Scanner keyboard = new Scanner(System.in)

and suppose you continue with the following code:

int n = keyboard.nextInt();
String sl = keyboard.nextLine();
String s2 = keyboard.nextLine();

Now, assume that the input typed on the keyboard is:

2 heads ore
better thon
1 head.

This sets the value of the variable n to 2, that of the variable s1to " heads are”, and that of
the variable s2 to "better than".

saluManmpmbmmiiuMMinpulmmud

2
heads are better than
1 head. i

vwmmmnhzo]ntohmloz.thtumof'lnvnmblesuo “heads are bet-
ter than", and that of the variable s2 to "1 head. . But that is not what happens.

Wlmlyhapprmhﬂmm”mo[ﬂnnmhnlsu!wz.'lmoﬂhvmbslum
to the empty string, and that of the variable s2 to "heads are better than". The method
mxnzmmzmmmmmm'o;-mmm'\n',sommmu.m
mnwbnmdsmmvfmllmmucohmmz.MBangmmonmatlm
(except for '\n"), s0 nextLine returns the empty string. The second invocation of nextLine
begins on the next line and reads "heads are better than".

When combining different methods for reading from the keyboard, you sometimes have to
Indudnnnmimncmonnfnextunetogavidoﬂhemnhlm(mg«ﬂ'ﬂuﬂ An')
This is illustrated in Display 2.8,

A GUI with a Label and Color

Display 17.6 shows a class for GUls with a label and a background colar. We have already discussed the use of
wmﬁm‘mmumumﬂumm'ﬂm button works. " The label
s created as foliows:

JLabel alabel = new JLabel(“Close-window button works.™);

mhulun«dmhnrr—wmuummu:hawmumngnmmmym&
.

add(alabel) ;
mmmco\ommnuwyummmmum
setDefaultCloseOperation(JIFrame. EXIT_ON.CLOSE) ;

muw-y,mmmummmmmmmmMhutuvw-hum
Mwwmw‘llhbuMnkﬂ!yw.b.ﬂh-ldlch"mwhnmvimol
the class Coloredwindow, then the entire program ends and all windows go sway.

Note that we set the lite of the IF rame by making it an argument to super ather than an argument to
setTitle. This is another common way to set the title of a JFrame.
uyummmwlwmmmouphynu,mmmmﬂum—mn
qnum.h-mm.mmbuymmmmuwm.

CHAPTER SUMMARY

Late hinding (also called dynamic binding) means thar the decision of which ver- |
sion of a method is appropriate is decided at run time. Java uses lare binding,

Chapter Summaries
Polymorphism means using the process of late binding to allow differenc objects to This end'of'Chapter tool provides a
use different method actions for the same method name. Polymorpbism is essentially Concise OVeWiew Of the fundamenta'

another word for late binding.

You can assign an object of a derived class o a variable of its base class (or any | concepts presented in the chapter.

ancestor class), but you cannot do the reverse.

If you add the modifier final to the definition of a2 method, that indicates that the

method may not be redefined in a derived class. If you add the modifier final to
the definition of a class, that indicates that the class may not be used as a base class
to derive other classes.

An abstract method serves as a placeholder for a method that will be fully defined

in a descendent class.

An abstract class is a class with one or more abstract methods.

An abstracr class is designed to be used as a base class to derive other classes. You
cannot create an object of an abstract class type (unless it is an object of some con-
crete descendent class).

An abstract class is a type. You can have variables whose type is an abstract class and
you can have parameters whose type is an abscract type.

N

Programming Projects
Found at the end of each chapter, PROGRAMMING PROJECTS
Programming Projects challenge readers QR L T i it

To access these please go to: www.aw-be.com/codemate

to design and implement a Java L. InProgeamiing Project 3 from Chispect 7.the A en cliss wag sewritten o ue loheiit
ance. The rewritten Alien class should be made abstract since chere will never be a
program to solve a problem. Example need to create an inscance of i, only it derived cesss. Change thisto an abstrce class

and also make the getbDomage method an abstract method. Test the class from your

solutions for all programming projects natn method to easure that it seill operazes s expected.

are available to instructors.

CodeMate

CodeMate brings end-of-chapter
programming projects to life.
- Working online, students can view,
|
|
|

compile, run, and edit select
programming problems as well as all

m 7. Define a class named MultiTtemSale that represents a sale of mulriple items of type
Sale given in Display 8.1 {or of the types of any escendent classes). The class

MultiItemSale will have an insta

riable who: hich will be used

ype is Sale[]

as a partially filled array. There will also be anorther instance variable of type int thar | code Iistings from the textbook. Best

keeps track of how much of this array is currently used. The exact decails on methods
and other instance variables, if any. are up to you. Use this class in a program that | ’ .
ohiins Wpin i peRST s S ek e e] of all, CodeMate’s tutorial feedback

and computes the tocal bill for the list of items sold

helps students work through
common programming errors,
improving their programming skills.
An automated gradebook allows
instructors to assign CodeMate
problems and track student progress
online.

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20
Appendix 1
Appendix 2
Appendix 3
Appendix 4
Appendix 5

GETTING STARTED 1

CONSOLE INPUT AND OUTPUT 57

FLOW OF CONTROL 95

DEFINING CLASSES | 163

DEFINING CLASSES Il 249

ARRAYS 337

INHERITANCE 421

POLYMORPHISM AND ABSTRACT CLASSES 475
EXCEPTION HANDLING 515

FILE 170 573

RECURSION 649

UML PATTERNS 687

INTERFACES AND INNER CLASSES 709
GENERICS AND THE ARRAYLIST CLASS 759
LINKED DATA STRUCTURES‘ 8o7
COLLECTIONS AND ITERATORS 875
SWING 1 919

APPLETS 1001

SWING Il 1025

JAVA NEVER ENDS 1099

Keywords nai

Precedence and Associativity Rules 1123
Unicode Character Set 1125

Format Specifications for printf 127
Summary of Classes and Interfaces 1129
Index 197

