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PREFACE

THIs book is mainly concerned with three aspects of ela,stmlty theory
which have attracted considerable attention in recent years, and is not
intended to be an exhaustive treatise. Many important topies, such as
the torsion and flexure of beams, energy methods, and the theory of
elastic stability, are omitted because they have already been extensively
discussed in other books. The three main topics considered here are
finite elastic deformations, complex variable methods for two-dimen-
sional problems for both isotropic and aeolotropic bodies, and shell
theory, the latter topics being confined to classical infinitesimal elasti-
city. Inaddition, some mention is made of three-dimensional problems
for isotropic and hexagonally aeolotropic bodies. Throughout the book
emphasis is placed on the use of general tensor notations in which
general theories can be expressed in an elegant and compact form, and
which are of considerable help in the solution of special problems,
particularly for finite deformations. Vector notations are also used with
tensors whenever appropriate.

A number of books on tensor analysis are available, but since workers
in the field of elasticity are still often unfamiliar with these notations
we have included a summary of tensors in Chapter I. By restricting the
discussion to a three-dimensionial Euclidean space it is possible to pre-
sent a comparatively simple account of the relevant theory. The main
properties of two-dimensional surfaces are then deduced by regarding
such surfaces as being embedded in three-dimensional Euclidean space.
Tensor analysis can then be extended to general Riemannian spaces
without difficulty, but this extension is not required here. The advan-
tages of the presentation of tensor analysis from a restricted point of
view seems to be sufficient to justify the sacrifice of some generality.

Chapter IT contains an account of the general theory of elasticity for
finite deformations, using the notations of Chapter I. Special attention
is given to the formulation of stress-strain relations for an isotropic
body. Chapter III contains solutions of a number of special problems,
mostly for incompressible isotropic bodies, the majority being ‘obtained
in a general form which is independent of the choice of strain-energy
function. A number of these solutions have been found to have prac-
tical application for rubber-like materials, but discussion of such applica-
tions is not included in the book.

In Chapter IV a theory of small deformations, which are superposed
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on finite deformations, is given, again making no assumptions about the
form of the strain-energy function. This theory is available for both
compressible and incompressible bodies and a number of special prob-
lems are solved. The advantages of tensor notations are again evident
in this chapter.

Chapter V contains the classical infinitesimal theory of elasticity
which is deduced as a special case of the general theory developed in
Chapter II. Once again, tensor notations are used, so that specialization
to particular coordinate systems is then a straightforward matter. In
this chapter stress-strain relations are deduced for aeolotropic as well as
isotropic bodies. The chapter closes with the solution of some three-
dimensional problems for both isotropic and hexagonally aeolotropic
bodies.

Chapters VI and VII deal with plane strain anu plate theories for both
isotropy and aeolotropy and are first developed in tensor notation. By
specialization of this general form of the two-dimensional theories it is
possible to introduce complex variable notations in a consistent and
natural manner, so that complex combinations of stresses appear by
using tensor transformations from rectangular-cartesian to complex co-
ordinates. Two-dimensional problems are discussed in Chapter VIII for
isotropie bodies, and in Chapter IX for aeolotropic bodies for plane
strain, and for plates deformed by forces in their planes, sing some
powerful and elegant tools of complex function theory. Problems of
transverse flexure of plane plates are not diseussed in detail since many
of these problems are analytically similar to those occurring in plane
strain. In Chapter VII, however, an extension of the classical theory of
flexure ‘of isotropic plates, due to Reissner, is considered, and a special
problem is solved in Chapter VIII, using this theory.

Some of the general methods of solution of two-dimensional problems
given in Chapter VIII are due to Muskhelishvili and other Russian
writers, and this chapter (and § 1.14 to § 1.21) owes much to a book by
Muskhelishvili, Singular Integral Equations (Moscow, 1946), which was
translated by J. R. M. Radok and W. G. Woolnough (Australia, 1949).
At the time of writing, this book, translated by J. R. M. Radok, has
received wider publication by P. Noordhoff (Groningen, Holland, 1953).
In addition, another important book by Muskhelishvili, Some Basic
Problems of the Mathematical Theory of Elasticity, translated by J. R. M.
Radok, has just been published by P. Noordhoff. Reference is made to
the Russian version of this book in footnotes to Chapter VI but the
book has not been available to the present writers.
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In footnotes on page 185 of Chapter VI references are given to pioneer
work by Lechnitzky in two-dimensional problems for aeolotropic bodies,
and references to work by other Russian writers are contained in the
paper by Sokolnikoff which is quoted on page 185. The work on aeolo-
tropic materials by Russian writers has not been available to the present
authors so that it has not been possible to refer to it adequately in this
book. For this reason reference is often made to papers which have
appeared in British journals but it is recognized that Russian authors
may frequently claim priority.

The last chapters of the book, X-XIV, are devoted to the theory of
shells ; here emphasis is placed on the formulation of a general theory
and only a few special problems are discussed. Once more the value of
tensor notations is evident. The theory of shells given in Chapter X
differs in some respects from existing theories. Attention is restricted to
a first approximation, which, it is believed, is satisfactory for many
problems which arise in practice.

It is a pleasure te thank Professor I. N. Sneddon for help in proof-
reading, Miss M. J. Haining for typing all the manuseript, and the Press
for their care and attention in getting the book into print.

Thanks are due to the Royal Society for permission to reproduce
Figures 9.1-9.4 from their Proceedings.

A E. G.

W. Z.
January 1954
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1
MATHEMATICAL PRELIMINARIES

THIs chapter contains a summary of some important definitions, rela-
tions and formulae of vector and tensor calculus, functions of & complex
variable, and Fourier integrals, which are essential for our treatment
of the theory of elasticity. We have not included proofs of all theorems
and formulae but it is hoped that sufficient details are given so that the
reader may understand the remaining chapters without being forced
to make constant reference to other mathematical books.}

1.1. Indicial notation. Summation convention. Kronecker delta

Consider symbols which are characterized by one or several indices
which may be either subscripts or superscripts,{ such as 4;, B, 4,
Bj, ete. Sometimes it is necessary to decide the order of the indices
when subscripts and superscripts occur together and then, for example,
we write 4%; where the dot before j shows that j is the second index
and ¢ the first.

Unless otherwise stated Latin indices represent the numbers 1, 2, 3.
Thus, A* represents any one of the three elements A, 42, 4% and 4,;
represents any one of the nine elements 4,;, 4,5, A3, Ag;, Agg, A3, 43,
Agy, Ags.

Systems of elements which, like 4%, depend on one index only, are
called systems of the first order, and the separate terms A, 42, 43 are -
called the components of the system. Systems of the first order have

one or other of the two forms
At B,

1 More detailed treatments of vector and tensor calculus are given, e.g., by A. Duschek
and A. Hochrainer, Grundziige der Tensorrechnung in Analytischer Darstellung, vol. i
(1948), vol. ii (1950), Vienna; L. A. Eisenhart, An Introduction to Differential Geometry
(Princeton, 1947); A. J. McConnel, Applications of the Absolute Differential Calculus
{London and Glasgow, 1947); F. D. Murnaghan, Introduction to Applied Mathematics
(New York, 1948); J. L. Synge and A. Schild, Tensor Calculus (Toronto, 1949); I. 8.
Sokolnikoff, Tensor Analysis (New York, 1951); C. E. Weatherburn, An Intfoduction to
Riemannian Geometry and the Tensor Calculus (Cambridge, 1938). The method of
presentation of tensor caleulus given in this chapter differs, however, in some respects
from that of other writers. §§ 1.14 to 1.21 on complex variable theory were written
with the hel of a book by N. I. Muskhelishvili, Singular Integral Equations (Moscow,
1946), translated by J. R. M. Radok and W. G. Woolnough (Australia, 1949).

Reference may be made to E. C. Titchmarsh, Theory of Fourier Integrals (Oxford, 1937),
for the results of § 1.22.

1 It is understood that indices as superscripts are not taken as powers.

5237 B



2 MATHEMATICAL PRELIMINARIES Chap. I

Systems of the second order depend on two indices and can be of the
three types Ay, At;or At AY,

and there are nine components in each system. Similarly, we have
systems of the third and higher orders.

A single element ¢, which has no indices, is called a system of order
Zero.

Expressions which consist of a sum are formed by the following
summation convention, unless stated otherwise. Any term in which the
same index (subscript or superscript) appears twice stands for the sum
of all such terms obtained by giving this index its complete range of
values. The following examples illustrate this convention:

A'B, = z AiB; = A'B,+A%B,+ A%B,

i=1 ;

: : (1.1.1.)

= iE A‘:,— = A%+ A% A%
=1

”x ol = z z AUQ’ il = Allxlx +A13x1x2 A13x1x3+ ]
i=1
] +A21x2x1+A22x.2x2+A23x2x3+ (1-1.2)
+ Agy B+ A gy 2%+ A gy 2%

Since the repeated index is summed it follows that we may substitute
for the particular letter used any other letter without altering the value
of the expansion. Thus

AiB, = AB,

No summation is carried out if the same index is repeated more than
twice as, for example, in 4¥B;;. On the other hand, when more than
one summation is necessary, different summation indices are taken, as
in example (1.1.2).
1t may be mentioned that it does not, of course, follow ﬁ'om an
equation of the type Ai B, = AiC,

that B; = C}, since both sides of the equation represent the sums of
three different terms.

A special meaning is given to the symbols 3¢ which are called Kro-
necker deltas. The Kronecker deltas have the following values:
=0 (+]) }

_ U ; (1.1.3)
8t=1 (i =4, jnot summed)
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We therefore have
%=%=ﬁ=%=%=%=m
H=8=8=1.

The Kronecker delta is sometimes called the substitution cperator
since, for example,

Sjaj = a‘, Siaﬁ == akj. (l.1.4)

1.2. Transformations of coordinates

We denote by ¢ three independent variables whose differentials are
df’. We also introduce the convention that partial derivatives of a

function with respect to the independent variables are denoted by a.
comma. For example,

0A
A"' = W’
04
Ay = —glF
24
», o4
A= g

Let us now suppose that the variables ¢ are transformed into a set
of new variables ¢ by any arbitrary single-valued functions of the form

o = 86, 02, 6®). (1.2.1)
We assume that the arbitrary functions possess derivatives up to any

order required and also that the transformation (1.2.1) is reversible.
We therefore have the inverse transformation

6 = 6i(0, 62, 6%), (1.2.2)

and we assume that the functions ¢* are also single-valued.
The transformation of. differentials d# and d@* follows immediately
from (1.2.1) and (1.2.2), so that -

dg.::%d?}, (1.2.3)
a6 = cjdby
where .6;:::%5_;" c}:—z%;. (1.2.4)

The functions in (1.2.4) are related by the equations

é,i‘c;‘ — ciéjk — 8}.’, (1.2.5)
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from which the values of & can be calculated when ¢} are known, and
vice versa, provided that the functional determinant

¢ = |gj] 0.
This last condition holds because our transformations are assumed to
be reversible.
From (1.2.3) we see that the transformation of the differentials is

a linear one, while the transformation of the variables 6% in (1.2.1) is,
of course, not linear in general.

1.3. Invariants. Tensors

Consider a system 7' of functions (of any order) whose components
are defined in the general set of variables 6% and are functions of 6, 6%, 63,
If the variables 8 can be changed to # by equations (1.2.1) we can
define new components of 7' in the general variables § which are func-
tions of A1, 62, 8%, and if the components of 7' in the two sets of variables
are related by certain rules, which we now examine, the system of
functions 7T is called a tensor. .

I. A system of order zero may be defined to have a single component
¢ in the variables 6%, and a single component ¢ in the variables &. If

$(6Y,82,6%) = (6%, 6, 6%), (1.3.1)

that is, numerically equal at corresponding values of &, 6%, then the
functions ¢ and & of the 6”s and §”’s respectively are the components
in their respective variables of a tensor of order zero. This system is
also called a scalar invariant or scalar. For brevity we shall say that
é (or §) is a scalar.
II. A system of order one may be defined to have three components
At in the variables 8¢ and three components A4¢ in the variables §. If
A = gl Aj, (1.3.2)
then the functions A4%(6*, 62, 83) and Ai(f!, 6%, %) are the components in
their respective variables of a coniravariant tensor of order one. For
brevity we shall say that A7 (or A7) is a contravariant tensor of order
one.
III. A system of order one may be defined to have three components
A, in the variables & and three components 4; in the variables 8. If

A, =cid, (1.3.3)
then the functions A6, 62,6%) and A4,(6, 6%, 6°) are the components in

their respective variables of a covariant tensor of order one. For brevity
we shall say that 4; (or 4,) is a covariant tensor of order one:
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IV. A system of order two may be defined to have nine components
A in the variables 6 and nine components A% in the variables 8. If

At = ¢l @ Amn, (1.3.4)
then the functions A%(f!,62 6%) and A%(f, 62 6%) are the components
in their respective variables of a contravariant tensor of order two. For
brevity we shall say that A¥ (or 4¥) is a contravariant tensor of order
two. '

V. A system of order two may be defined to have nine components
A;; in the variables ¢° and nine components A,; in the variables 7. If

Ay = Pt A, (1.3.5)

then the functions A (6", 62 63) and A;;(6',6? 8%) are the components
in their respective variables of a covariant tensor of order two. For
brevity we call 4;; (or A;;) a covariant tensor of order two.

VI. A system of order two may be defined to have nine components
A (or 4;) in the variables ¢ and nine components 4*; (or 4;7) in the
variables . If A, — & e Am |

A= gcrdm]’
then the funr tions A%;(6%, 62, 6%) {or A;(6%,62,6%)} and A*;(8", 62, 6) {or
A6, 6% are the components in their respective variables of a
mizxed tensor of order two. For brevity we call 4%; (or 4%;), and 4;*
(or A4;%), mixed tensors of order two.

The order of the tensor is denoted by the number of indices and the
type of tensor (contravariant, covariant, or mixed) by the position of
the indices, so that we frequently refer to tensors (e.g. A%, 4;;, 4;%),
and omit explicit reference to the order or type.

In a similar way tensors of higher orders may be formed. For example,
mixed components A% (6%, 6%,6%) and A% (6,82, 6%), in their respective
variables, of a tensor of order three, are related by the law

Ay =ik Ay (1.3.7)
Again, we often omit the word component and refer to a mixed tensor
Aty (or A%y of order three, or simply, a tensor 4%, and similarly for
tensors of any order or type.

From (1.2.3) we see that the differentials df? transform according to
the law for contravariant tensors so that the position of the upper index
is justified. The variables 6% themselves are in general neither contra-
variant nor covariant and the position of their index must be recognized
as an exception. In future the index in non-tensors will be placed either

(1.3.6)
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/ above or below according to convenience. For example, we shall use
either & or 0,. J

We notice that each component of a tensor in the new variables is
& linear combination of the components in the old variables. Conse-
quently, if all components of a tensor are zero in one system of variables
they are also zero in all other systems of variables which can be obtained
by transformations of the type (1.2.1) and (1.2.2).

It also follows immediately from the definitions (1.3.1) to (1.3.7) and
the relations (1.2.4) and (1.2.5) that all functions of the form

A‘B,, . AYB,,
etc., are invariants, if, for example, using an obvious notation, we
e TB,= 4B, I9E,= AYB,

We observe that components of tensors satisfy the group property
under general transformations of variables. In other words, if the
transformation relations exist when the variables are changed from 0,
to 6;, and when they are changed from 0; to"6;, then they also exist
when the variables are changed from 6} to 8, This property follows
easily from the forms of the transformations.

We may notice at this point the arbitrary character of tensors. We
may take as the components of a tensor in a given set of variables any
set of functions of the requisite number. We then define components
in any general system of variables by the equations expressing the law
of transformation for that particular tensor. Because of the group

. property we then know that the components of our tensor expressed

in a general system of variables will always transform according to our
tensor rules. ' ‘ '

1.4. Addition, multiplication, and contraction of tensors

‘The operations of addition and subtraction of tensors apply only to
tensors of the same order and type and lead to tensors of the same
order and type. For example, if A* and B* are contravariant tensors
of order one then C* defined by the equation

Ct= Ai{ Bt
is also a contravariant tensor of order one. Or again, the difference
of A%, and B, leads to a mixed tensor C% 4 of the third order where
0‘.;}; = A':_;;;—B‘:;k.
The equations A" = Bu

are said to form a tensor equation, that is, if they are true in one system
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of variables they are true in all other systems. This follows at once
from the definition of a tensor since components in one set of variables
define one unique tensor.

The multiplication of tensors leads to tensors of higher orders. For
example, if we multiply 4; and B;, we get the tensor

Cipe = A By,
of order three.

Another operation applied to tensors is the operation of coniraction.
Let us consider the mixed tensor A%, of order three. If we make the
indices k and ¢ the same so that the tensor becomes A%, and if we
remember that the repeated index is to be summed, we see that the
new system has its order reduced by two. It can be shown from (1.3.2)
to (1.3.7) that the new system forms a contravariant tensor of order one.

We see that any combination of the operations of addition, subtrac-
tion, multiplication, and contraction on tensors produces new tensors,
and these operations are called tensor operations. We often recognize
the tensorial character of a system of functions by observing that they
are formed by a combination of these operations on known tensors.

Finally, we mention another important rule concerning tensors. If,
for example, we have a system of nine functions A4, such that

for every contravariant tensor af, where B; is known to be a covariant

tensor, then
A(ij) B Aij

is a tensor. This result can be generalized to apply to tensors of any
order and type.

1.5. Symmetric and skew-symmetric tensors

If we are given the tensors A”, 4,; it may happen that each com-
ponent is unaltered in value when the indices are interchanged, so that

Al = Afi, A= Ay, (1.5.1) -

The tensors are then said to be symmetric. More generally, a tensor
of any order is said to be symmetric in two subseripts or superscripts
if it is unaltered when the two indices are interchanged, and the tensor
is completely symmetric if the interchange of any subscripts or super-
seripts leaves it unaltered. The tensor 4, of the third order which
is completely symmetric will, for example, satisfy the relations

Aﬁk = Aikj e Ajik £ Ajk;; == Akij = Akji' (1.5.2)



