.

.'2 A

Wrox Programier to R#bgrammer™

WIrox: L W

A Wiley Brand

Patterns, Principles,
and Practices of
'Domain-Driven Design

| Scott Millett with Nick Tune

Patterns Prlnc1p|es, and

Practices of Domain-Driven Design

Scott Millett

Nick Tune

A

WIrox:

A Wiley Brand

Patterns, Principles, and Practices of Domain-Driven Design

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-71470-6
ISBN: 978-1-118-71465-2 (ebk)
ISBN: 978-1-118-71469-0 (ebk)

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,

fax (201) 748-6008, or online at http: //www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work

is sold with the understanding thart the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,

readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United Srates at (877) 762-2974, outside the United States at (317) §72-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www . wiley . com.

Library of Congress Control Number: 2014951018

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

Patterns, Principles, and
Practices of Domain-Driven Design

For my darling buds, Primrose and Albert.

—ScoTT MILLETT

ABOUT THE AUTHOR

SCOTT MILLETT is the Director of IT for Iglu.com and has been working with .NET since version
1.0. He was awarded the ASPNET MVP in 2010 and 2011. He is also the author of Professional
ASP.NET Design Patterns and Professional Enterprise .NET. If you would like to contact Scott
about DDD or working at Iglu, feel free to write to him at scott@elbandit.co.uk, by giving him a
tweet @ScottMillett, or becoming friends via https://www.linkedin.com/in/scottmillett.

ABOUT THE CONTRIBUTING AUTHOR

NICK TUNE is passionate about solving business problems, building ambitious products, and
constantly learning. Being a software developer really is his dream job. His career highlight so far
was working at 7digital, where he was part of self-organizing, business-focused teams that deployed
to production up to 23 times per day. His future ambitions are to work on exciting new products,
with passionate people, and continually become a more complete problem solver.

You can learn more about Nick and his views on software development, software delivery, and his
favorite technologies on his website (www.ntcoding.co.uk) and Twitter (entcoding).

ABOUT THE TECHNICAL EDITOR

ANTONY DENYER works as a developer, consultant, and coach and has been developing software
professionally since 2004. He has worked on various projects that have effectively used DDD
concepts and practices. More recently, he has been advocating the use of CQRS and REST in

the majority of his projects. You can reach him via e-mail at antonydenyer.co.uk, and he tweets
from @tonydenyer.

CREDITS

PROJECT EDITOR BUSINESS MANAGER

Rosemarie Graham Amy Knies

TECHNICAL EDITOR ASSOCIATE PUBLISHER

Antony Denyer Jim Minatel

PRODUCTION EDITOR PROJECT COORDINATOR, COVER
Christine O'Connor Brent Savage

COPY EDITOR PROOFREADER

Karen Gill Jenn Bennett, Word One
MANAGER OF CONTENT DEVELOPMENT INDEXER

AND ASSEMBLY Johnna VanHoose Dinse

Mary Beth Wakefield

COVER DESIGNER
MARKETING DIRECTOR W'||ey
David Mayhew

COVER IMAGE

MARKETING MANAGER @iStockphoto.com/andynwt
Carrie Sherrill

PROFESSIONAL TECHNOLOGY &
STRATEGY DIRECTOR
Barry Pruett

ACKNOWLEDGMENTS

FIRSTLY | WOULD LIKE to give a massive thanks to Nick Tune for agreeing to help me out with this
project and contributing greatly to many of the chapters. I would also like to thank Rosemarie
Graham, Jim Minatel, and all those at Wrox who have helped to create this book. Thanks as well
to Antony Denyer who did a sterling job as the technical editor. Lastly, many thanks to Isabel Mack
for the grammar pointers and early feedback of the Leanpub draft.

INTRODUCTION

WRITING SOFTWARE IS EASY— at least if it’s greenfield software. When it comes to modifying
code written by other developers or code you wrote six months ago, it can be a bit of a bore at best
and a nightmare at worst. The software works, but you aren’t sure exactly how. It contains all the
right frameworks and patterns, and has been created using an agile approach, but introducing new
features into the codebase is harder than it should be. Even business experts aren’t helpful because
the code bears no resemblance to the language they use. Working on such systems becomes a chore,
leaving developers frustrated and devoid of any coding pleasure.

Domain-Driven Design (DDD) is a process that aligns your code with the reality of your problem
domain. As your product evolves, adding new features becomes as easy as it was in the good

old days of greenfield development. Although DDD understands the need for software patterns,
principles, methodologies, and frameworks, it values developers and domain experts working
together to understand domain concepts, policies, and logic equally. With a greater knowledge of
the problem domain and a synergy with the business, developers are more likely to build software
that is more readable and easier to adapt for future enhancement.

Following the DDD philosophy will give developers the knowledge and skills they need to tackle
large or complex business systems effectively. Future enhancement requests won’t be met with an air
of dread, and developers will no longer have stigma attached to the legacy application. In fact, the

term legacy will be recategorized in a developer’s mind as meaning this: a system that continues to
give value for the business.

OVERVIEW OF THE BOOK AND TECHNOLOGY

This book provides a thorough understanding of how you can apply the patterns and practices of
DDD on your own projects, but before delving into the details, it’s good to take a bird’s-eye view of
the philosophy so you can get a sense of what DDD is really all about.

The Problem Space

Before you can develop a solution, you must understand the problem. DDD emphasizes the need to
focus on the business problem domain: its terminology, the core reasons behind why the software
is being developed, and what success means to the business. The need for the development team to
value domain knowledge just as much as technical expertise is vital to gain a deeper insight into the
problem domain and to decompose large domains into smaller subdomains.

Figure I-1 shows a high-level overview of the problem space of DDD that will be introduced in the
first part of this book,

INTRODUCTION

Start with a...

Ubiquitous Language
Understand the The Domain Domain Models
language of the within the context

domain C\]Q of a subdomain.

Problem Doemain
+
Business Wish

Based on
Described in
terms of

Domain Experts and
the Development Team

Generic
Domains

Domain

Core Model

Domains

Domain Distilled into

Crunch Knowledge

through

The reason why
the system is
being built,
Focus on it.

Domain Vision
Statement

Domain-Driven Design

Can reveal
Problem Space

FIGURE I-1: A blueprint of the problem space of DDD.

The Solution Space

When you have a sound understanding of the problem domain, strategic patterns of DDD can
help you implement a technical solution in synergy with the problem space. Patterns enable core
parts of your system that are crucial to the success of the product to be protected from the generic

areas. Isolating integral components allows them to be modified without having a rippling effect
throughout the system.

Core parts of your product that are sufficiently complex or will frequently change should be
based on a model. The tactical patterns of DDD along with Model-Driven Design will help you
create a useful model of your domain in code. A model is the home to all of the domain logic
that enables your application to fulfill business use cases. A model is kept separate from technical
complexities to enable business rules and policies to evolve. A model that is in synergy with the

problem domain will enable your software to be adaptable and understood by other developers
and business experts.

Figure [-2 shows a high-level overview of the solution space of DDD that is introduced in the first
part of this book.

XXXVi

INTRODUCTION

Applicable to a
context

Ubiquitous Language

Bounded
Context

| Domain Experts and

Legacy |, the Development Team

\
\Context

Bounded
Context

N
Supporting / Bounded
~
~< \ Context

. -

Shapes and
enhances

/ Create

Domain
Knowledge

Model-Driven Design

Core and Complex
subdomains are hased
on a model

Domain-Driven Design

. Adds to and refines
Solution Space understanding of

FIGURE 1-2: A blueprint of the solution space of Domain-Driven Design.

HOW THIS BOOK IS ORGANIZED

This book is divided into four parts. Part I focuses on the philosophy, principles, and practices of
DDD. Part II details the strategic patterns of integrating bounded contexts. Part 111 covers tactical

patterns for creating effective domain models. Part IV delves into design patterns you can apply to
utilize the domain model and build effective applications.

Part I: The Principles and Practices of
Domain-Driven Design

Part I introduces you to the principles and practices of DDD.

Chapter 1: What Is Domain-Driven Design?

DDD is a philosophy to help with the challenges of building software for complex domains.
This chapter introduces the philosophy and explains why language, collaboration, and context

are the most important facets of DDD and why it is much more than a collection of coding
patterns.

XXXVii

INTRODUCTION

Chapter 2: Distilling the Problem Domain

Making sense of a complex problem domain is essential to creating maintainable software.
Knowledge crunching with domain experts is key to unlocking that knowledge. Chapter 2 details
techniques to enable development teams to collaborate, experiment, and learn with domain experts
to create an effective domain model.

Chapter 3: Focusing on the Core Domain

Chapter 3 explains how to distill large problem domains and identify the most important part of
a problem: the core domain. It then explains why you should focus time and energy in the core
domain and isolate it from the less important supporting and generic domains.

Chapter 4: Model-Driven Design

Business colleagues understand an analysis model based on the problem area you are working
within. Development teams have their own code version of this model. In order for business and
technical teams to collaborate a single model is needed. A ubiquitous language and a shared
understanding of the problem space is what binds the analysis model to the code model. The idea
of a shared language is core to DDD and underpins the philosophy. A language describing the
terms and concepts of the domain, which is created by both the development team and the business
experts, is vital to aid communication on complex systems.

Chapter 5: Domain Model Implementation Patterns

Chapter 5 expands on the role of the domain model within your application and the responsibilities
it takes on. The chapter also presents the various patterns that can be used to implement a domain
model and what situations they are most appropriate for.

Chapter 6: Maintaining the Integrity of Domain Models
with Bounded Contexts

In large solutions more than a single model may exist. It is important to protect the integrity of each
model to remove the chance of ambiguity in the language and concepts being reused inappropriately
by different teams. The strategic pattern known as bounded context is designed to isolate and
protect a model in a context while ensuring it can collaborate with other models.

Chapter 7: Context Mapping

Using a context map to understand the relationships between different models in an application
and how they integrate is vital for strategic design. It is not only the technical integrations that
context maps cover but also the political relationships between teams. Context maps provide a
view of the landscape that can help teams understand their model in the context of the entire
landscape.

XXXViii

INTRODUCTION

Chapter 8: Application Architecture

An application needs to be able to utilize the domain model to satisfy business use cases. Chapter 8
introduces architectural patterns to structure your applications to retain the integrity of your
domain model.

Chapter 9: Common Problems for Teams Starting Out with
Domain-Driven Design
Chapter 9 describes the common issues teams face when applying DDD and why it’s important to

know when not to use it. The chapter also focuses on why applying DDD to simple problems can
lead to overdesigned systems and needless complexity.

Chapter 10: Applying the Principles, Practices, and
Patterns of DDD

Chapter 10 covers techniques to sell DDD and to start applying the principles and practices to your
projects. It explains how exploration and experimentation are more useful to build great software
than trying to create the perfect domain model.

Part Il: Strategic Patterns: Communicating between
Bounded Contexts
Part 11 shows you how to integrate bounded contexts, and offers details on the options open

for architecting bounded contexts. Code examples are presented that detail how to integrate

with legacy applications. Also included are techniques for communicating across bounded
contexts.

Chapter 11: Introduction to Bounded Context Integration

Modern software applications are distributed systems that have scalability and reliability

requirements. This chapter blends distributed systems theory with DDD so that you can have the
best of both worlds.

Chapter 12: Integrating via Messaging

A sample application is built showing how to apply distributed systems principles synergistically
with DDD using a message bus for asynchronous messaging.

Chapter 13: Integrating via HTTP with RPC and REST

Another sample application is built showing an alternative approach to building asynchronous

distributed systems. This approach uses standard protocols like Hypertext Transport Protocol
(HTTP), REST, and Atom instead of a message bus.

XXXIX

INTRODUCTION

Part lll: Tactical Patterns: Creating Effective Domain Models

Part I11 covers the design patterns you can use to build a domain model in code, along with patterns

to persist your model and patterns to manage the lifecycles of the domain objects that form your
model.

Chapter 14: Introducing the Domain Modeling Building Blocks

This chapter is an introduction to all the tactical patterns at your disposal that allow you to build
an effective domain model. The chapter highlights some best practice guidelines that produce more
manageable and expressive models in code.

Chapter 15: Value Objects

This is an introduction to the DDD modeling construct that represents identityless domain concepts
like money.

Chapter 16: Entities
Entities are domain concepts that have an identity, such as customers, transactions, and hotels. This

chapter covers a variety of examples and complementary implementation patterns.

Chapter 17: Domain Services

Some domain concepts are stateless operations that do not belong to a value object or an entity.
They are known as domain services.

Chapter 18: Domain Events

In many domains, focusing on events reveals greater insight than focusing on just entities. This

chapter introduces the domain event design pattern that allows you to express events more clearly in
your domain model.

Chapter 19: Aggregates

Aggregates are clusters of domain objects that represent domain concepts. Aggregates are a

consistency boundary defined around invariants. They are the most powerful of the tactical
patterns.

Chapter 20: Factories

Factories are a lifecycle pattern that separate use from construction for complex domain objects.

Chapter 21: Repositories

Repositories mediate between the domain model and the underlying data model. They ensure that
the domain model is kept separate from any infrastructure concerns.

xl

INTRODUCTION

Chapter 22: Event Sourcing

Like domain events in Chapter 18, event sourcing is a useful technique for emphasizing, in code,
events that occur in the problem domain. Event sourcing goes beyond domain events by storing the
state of the domain model as events. This chapter provides a number of examples, including ones
that use a purpose-built event store.

Part IV: Design Patterns for Effective Applications

Part [V showcases the design patterns for architecting applications that utilize and protect the
integrity of your domain model.

Chapter 23: Architecting Application User Interfaces

For systems composed of many bounded contexts, the user interface often requires the composition
of data from a number of them, especially when your bounded contexts form a distributed system.

Chapter 24: CQRS: An Architecture of a Bounded Context

CQRS is a design pattern that creates two models where there once was one. Instead of a single
model to handle the two different contexts of reads and writes, two explicit models are created to
handle commands or serve queries for reports.

Chapter 25: Commands: Application Service Patterns for
Processing Business Use Cases

Learn the difference between application and domain logic to keep your model focused and your
system maintainable.

Chapter 26: Queries: Domain Reporting

Business people need information to make informed business and product-development decisions.

A range of techniques for building reports that empower the business is demonstrated in this
chapter.

WHO SHOULD READ THIS BOOK

This book introduces the main themes behind DDD—its practices, patterns, and principles along
with personal experiences and interpretation of the philosophy. It is intended to be used as a
learning aid for those interested in or starting out with the philosophy. It is not a replacement for
Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric Evans (Addison-
Wesley Professional, 2003). Instead, it takes the concepts introduced by Evans and distills them into
simple straightforward prose, with practical examples so that any developer can get up to speed
with the philosophy before going on to study the subject in more depth.

xli

INTRODUCTION

This book is based on the author’s personal experiences with the subject matter. You may not
always agree with it if you are a seasoned DDD practitioner, but you should still get something out
of it.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
manually, or to use the source code files that accompany the book. All the source code used in this
book is available for download at www.wrox. com. Specifically for this book, the code download is
on the Download Code tab at: www.wrox.com/go/domaindrivendesign. Although code examples
are presented in C# .NET. The concepts and practices can be applied to any programming language.

You can also search for the book at www.wrox.com by ISBN (the ISBN for this book is 978-1-1187-
1470-6) to find the code. And a complete list of code downloads for all current Wrox books is
available at www.wrox.com/dynamic/books/download.aspx.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may

save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To find the errata page for this book, go to www.wrox.com/go/domaindrivendesign.

And click the Errata link. On this page you can view all errata that has been submitted for this book
and posted by Wrox editors.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport .shtml and complete the form there to send us the error you have found. We’ll check

the information and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

P2P.WROX.COM

xlii

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are
a web-based system for you to post messages relating to Wrox books and related technologies
and interact with other readers and technology users. The forums offer a subscription feature
to e-mail you topics of interest of your choosing when new posts are made to the forums. Wrox
authors, editors, other industry experts, and your fellow readers are present on these forums.

INTRODUCTION

At http://p2p.wrox.com, you will find a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Gotohttp://p2p.wrox.comand click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to

questions about how the forum software works, as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

SUMMARY

The aim of this book is to present the philosophy of DDD in a down-to-earth and practical manner
for experienced developers building applications for complex domains. A focus is placed on the
principles and practices of decomposing a complex problem space as well as the implementation
patterns and best practices for shaping a maintainable solution space. You will learn how to build
effective domain models by using tactical patterns and how to retain their integrity by applying the
strategic patterns of DDD.

By the end of this book, you will have a thorough understanding of DDD. You will be able to
communicate its value and when to use it. You will understand that even though the tactical
patterns of DDD are useful, it is the principles, practices, and strategic patterns that will help you
architect applications for maintenance and scale. With the information gained within this book, you

will be in a better place to manage the construction and maintenance of complex software for large
and complex problem domains.

xliii

