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B Preface

Discrete mathematics is an interesting course to teach and to study at the freshman

and sophomore level for several reasons. Its content is mathematics, but most of

its applications and more than half its students are from computer science. Thus

careful motivation of topics and previews of applications are important and nec-

essary strategies. Moreover, there are a number of substantive and diverse topics

covered in the course, so a text must proceed clearly and carefully, emphasizing
key ideas with suitable pedagogy. In addition, the student is often expected to de-

velop an important new skill: the ability to write a mathematical proof. This skill

is excellent training for writing good computer programs.

This text can be used by students in mathematics as an introduction to the fun-
damental ideas of discrete mathematics, and a foundation for the development of
more advanced mathematical concepts. If used in this way, the topics dealing with
specific computer science applications can be ignored or selected independently as
important examples. The text can also be used in a computer science or computer
engineering curriculum to present the foundations of many basic computer-related
concepts and provide a coherent development and common theme for these ideas.
The instructor can easily develop a suitable course by referring to the chapter pre-
requisites which identify material needed by that chapter.

W Approach

First, we have limited both the areas covered and the depth of coverage to what
we deem prudent in a first course taught at the freshman and sophomore level. We
have identified a set of topics that we feel are of genuine use in computer science
and elsewhere and that can be presented in a logically coherent fashion. We have
presented an introduction to these topics along with an indication of how they can.
be pursued in greater depth. This approach makes our text an excellent reference
for upper-division courses.

Second, the material has been organized and interrelated to minimize the mass
of definitions and the abstraction of some of the theory. Relations and digraphs are
treated as two aspects of the same fundamental mathematical idea, with a directed
graph being a pictorial representation of a relation. This fundamental idea is then
used as the basis of virtually all the concepts introduced in the book, including
functions, partial orders, graphs, and mathematical structures. Whenever possible,
each new idea introduced in the text uses previously encountered material and,
in turn, is developed in such a way that it simplifies the more complex ideas that
follow.

B What Is New in the Fifth Edition

We continue to believe that this book works well in the classroom because of the
unifying role played by the two key concepts: relations and digraphs. In this edi-
tion we have woven in a thread of coding in all its aspects, efficiency, effectiveness,
and security. Two new sections, Other Mathematical Structures and Public Key
Cryptology are the major components of this thread, but smaller related insertions
begin in Chapter 1. The number of exercises for this edition has been increased
by more than 25%. Whatever changes we have made, our objective has remained
the same as in the first four editions: fo present the basic notions of discrete math-
ematics and some of its applications in a clear and concise manner that will be
understandable to the student.

xiv
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« A cryptology thread begins in Chapter 1 and presents the basic ideas of the
field. The thread concludes in Public Key Cryptology. Included now is cod-
ing in all its aspects, efficiency, effectiveness, and security.

o A new section, Other Mathematical Structures, introduces the basic concepts

~  of rings and fields, in particular Z,.

o More opportunities for students to build modeling skills are provided.
Whether seen as modeling, abstraction, pattern recognition, or problem solv-
ing, the ability to see the mathematical bones of a problem is a critical factor
for success in higher-level mathematics courses.

¢ Understanding proofs and writing simple proofs are important course goals.
More occasions for students to read, analyze, complete, and produce proofs
are presented throughout the text, not just in the sections that introduce for-
mal proofs.

e More applications are included. Among these are relational databases, check
digits, a variety of ciphers, and weighted voting systems.

» New exercises have been added to each chapter. Greater emphasis has been
placed on multiple representations of concepts. There are approximately 400
more exercises than in the fourth edition.

» A brief historical commentary opens each chapter and introduces some of
the major contributors to that chapter’s topics.
« Isomorphism is presented in more contexts than before throughout the book.

* Additional student experiments have been developed on weighted voting sys-
tems, Petri nets, and Catalan numbers. Experiments have been integrated
into appropriate chapters and others are gathered in Appendix B. These as-
signments provide opportunities for exploration and discovery, as well as for
writing, and are designed for collaborative work.

« This edition continues to weave the discussion of proofs and proof tech-
niques throughout the book with comments on most proofs, exercises related
to the mechanics of proving statements, and Tips for Proofs sections. Many
of the new exercises provide more practice in building proof-reading and
proof-writing skills.

« Each chapter now has a set of review questions. These are mainly conceptual
in nature and help students identify the “big” ideas of the chapter.

o A glossary for quick reference is now included.

« The index contains approximately 100 new entries related to both new con-
cepts and to new examples for material in previous editions.

B Exercises

The exercises form an integral part of the book. Many are computational in nature,
whereas others are of a theoretical type. Many of the latter and the experiments,
to be further described below, require verbal solutions. Exercises to help develop
proof-writing skills ask the student to analyze proofs, amplify arguments, or com-
plete partial proofs. Guidance and practice in recognizing key elements and pat-
terns have been extended in many new exercises. Answers to all odd-numbered
exercises, review questions, and self-test items appear in the back of the book.
Solutions to all exercises appear in the Instructor’s Solutions Manual, which
is available (to instructors only) gratis from the publisher. The Instructor’s Solu-
tions Manual also includes notes on the pedagogical ideas underlying each chapter,

goals and grading guidelines for the experiments, and a test bank.
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W Experiments

Chapters 1 through 10 each end with a student experiment. These provide oppor-
tunities for discovery and exploration, or a more in-depth look at topics discussed
in the text. They are designed as extended-time, out-of-class experiences and are
suitable for group work. Each experiment requires significantly more writing than
section exercises do. Some additional experiments are to be found in Appendix B.
Content, prerequisites, and goals for each experiment are given in the Instructor’s
Solutions Manual.

B End-of-Chapter Material

Each chapter contains Tips for Proofs, a summary of Key Ideas for Review, a set
of Coding Exercises, an Experiment, a set of conceptual Review Questions, and a
Self-Test covering the chapter’s material.

B Organization

Chapter 1 contains material that is fundamental to the course. This includes sets,
subsets, and their operations; sequences; properties of the integers, including base
n representations; matrices; and mathematical structures. A goal of this chapter
is to help students develop skills in identifying patterns on many levels. Chapter
2 covers logic and related material, including methods of proof and mathematical
induction. Although the discussion of proof is based on this chapter, the commen-
tary on proofs continues throughout the book. Chapter 3, on counting, deals with
permutations, combinations, the pigeonhole principle, elements of probability, and
recurrence relations.

Chapter 4 presents basic types and properties of relations, along with their
representation as directed graphs. Connections with matrices and other data struc-
tures are also explored in this chapter. Chapter 5 deals with the notion of a function
and gives important examples of functions, including functions of special interest
in computer science. An introduction to the growth of functions is developed.
Chapter 6 covers partially ordered sets, including lattices and Boolean algebras.
A symbolic version for finding a Boolean function for a Boolean expression joins
the pictorial Karnaugh method. Chapter 7 introduces directed and undirected trees
along with applications of these ideas. Elementary graph theory with applications
to transport networks and matching problems is the focus of Chapter 8.

In Chapter 9 we return to mathematical structures and present the basic ideas
of semigroups, groups, rings, and fields. By building on work in previous chapters,
only a few new concepts are needed. Chapter 10 is devoted to finite-state machines.
It complements and makes effective use of ideas developed in previous chapters.
Chapter 11 finishes our discussion of coding for error detecting and correction and
for security purposes. Appendix A discusses algorithms and pseudocode. The
simplified pseudocode presented here is used in some text examples and exercises;
these may be omitted without loss of continuity. Appendix B gives some additional
experiments dealing with extensions or previews of topics in various parts of the
course.

B Optional Supplements

There is available with this text a 406 page workbook: Practice Problems in Dis-
crete Mathematics by Boyana Obrenic. It consists entirely of problem sets with
fully worked out solutions. It is available free when shrinkwrapped with the text-
book: ISBN 013-124112-5 (text and supplement). In addition, there is a 316 page
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workbook: Discrete Mathematics Workbook by James Bush. This item has out-
lines of key ideas, key terms, and sample problem sets (with solutions). It is avail-
able free when shrinkwrapped with the textbook: ISBN 013-124113-3 (text and

supplement).
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B A Word to Students

This course is likely to be different from your previous mathematics courses in
several ways. There are very few equations to solve, even fewer formulas, and just
a handful of procedures. Although there will be definitions and theorems to learn,
rote memorization alone will not carry you through the course. Understanding
concepts well enough to apply them in a variety of settings is essential for success.

The good news is that there is a wealth of interesting and useful material in
this text. We have chosen topics that form a basis for applications in everyday life,
mathematics, computer science, and other fields. We have also chosen the topics
so that they fit together and build on each other; this will help you to master the
concepts covered.

Two distinctive features of this course are a higher level of abstraction and
more emphasis on proofs than you have perhaps encountered in earlier mathemat-
ics courses. Here is an example of what we mean by abstraction. When you studied
algebra, you learned the distributive property of multiplication over addition. In
this course, you will abstract the concept of a distributive property and investigate
this idea for many pairs of operations, not just multiplication and addition.

The other feature is proofs. Before you close the book right here, let us tell
you something about how proofs are handled in this book. The goals are for you
to be able to read proofs intelligently and to produce proofs on your own. The way
we help you to these goals may remind you of your composition classes. Learning
to write a persuasive essay or a meaningful sonnet or other composition style is a
complicated process. First, you read, analyze, and study many examples. Next you
try your hand at the specific style. Typically this involves draft versions, revisions,
critiques, polishing, and rewriting to produce a strong essay or a good sonnet or
whatever form is required. There are no formulas or rote procedures for writing.

Proofs, like the products of a composition course, have structures and styles.
We give you lots of proofs to read and analyze. Some exercises ask that you
outline, analyze, or critique a proof. Other exercises require the completion of
partial proofs. And finaily, there are many opportunities for you to construct a
proof on your own. Believe us, reading and writing proofs are learnable skills.

On a larger scale, we hope this text helps you to become an effective commu-
nicator, a critical thinker, a reflective learner, and an innovative problem solver.

Best wishes for a successful and interesting experience.
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