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This book describes the progress that has been made towards the development of a
comprehensive understanding of the formation of complex, disorderly patterns under
far-from-equilibrium conditions.

The application of fractal geometry and scaling concepts to the quantitative
description and understanding of structure formed under non-equilibrium conditions is
described. Self-similar fractals, self-affine fractals, multifractals and scaling methods are
discussed, with examples, to facilitate applications in the physical sciences. Computer
simulations and experimental studies are emphasised, but the author also includes a
discussion of theoretical advances in the subject. Much of the book deals with
diffusion-limited growth processes and the evolution of rough surfaces, although a broad
range of other applications is also included. The book concludes with an extensive
reference list and guide to additional sources of information.

This book will be of interest to graduate students and researchers in physics,
chemistry, materials science, engineering and the earth sciences, and especially those
interested in applying the ideas of fractals and scaling to their work or those who have
an interest in non-equilibrium phenomena.



Preface

The development of a full understanding of the universe around us, in terms of
the basic properties of fundamental “particles” and their interactions, has long
been a dream of the physicist. Mindful of the difficulties encountered when
this approach is used to calculate the behavior of very simple systems, such
as molecules containing just a few atoms, the problem of understanding the
nature of much more complex systems, such as snowflakes, soot aggregates and
rough surfaces produced by processes such as vapor deposition or erosion, might
seem to be a daunting prospect. However, during the past one or two decades,
substantial progress has been made, based on statistical physics concepts such as
scaling and the independent development of fractal geometry, based on late 19th
century and early 20th century mathematics, by Benoit Mandelbrot. To a large
extent, this progress has been made by giving up the idea that an understanding
of complex systems can be based on an ever more detailed knowledge of their
microscopic components and focusing instead on the “universal” properties
that all materials possess in common, irrespective of their atomic and molecular
structure, and the manner in which properties on one length scale relate to those
on other length scales. The connection between microscopic and macroscopic
behavior is still important, and the theoretical justification for much of the work
described in this book is based on models that contain microscopic components
and interactions, at least on an abstract level. However, one of the objectives of
this book is to illustrate that scaling symmetries can be used, in much the same
way as other symmetries, t0 study a wide variety of systems and phenomena,
without taking into account the underlying microscopic physics on a detailed
level.
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Preface

One of the main objectives of this book is to show how a surprisingly wide
range of complex, disorderly systems can be quantitatively understood using
simple statistical physics concepts and simple mathematical tools. This book
contains many equations, but it should be accessible to anyone with a good
undergraduate education in the physical sciences. My original idea was to write
a single volume on the basics of fractals and scaling and applications in various
areas of science and technology. It soon became apparent that I wanted to say
more than could reasonably be contained in one book. Consequently this book
concentrates on some of the more fundamental aspects of pattern formation,
fractals and scaling. I am in the process of writing a second book, focusing
on colloidal fractals and aggregation kinetics, and a third monograph on the
applications of fractals and scaling in selected areas of science and technology.

My own interest in this area was first stimulated by the work of Thomas
Witten and Leonard Sander, more than ten years ago, on diffusion-limited
aggregation. The diffusion-limited aggregation model has become one of the
most important paradigms for disorderly growth, far from equilibrium, and
plays a central role in this book.

Much of the work on this book was carried out during a one year visit to
the Center for Advanced Studies at the Norwegian Academy of Science and
Letters. The remainder of the work was carried out in the Physics Department
at the University of Oslo. I would like to thank Jens Feder and especially
Torstein Jassang for hospitality at the University of Oslo, and Torstein Jossang
for making my stay at the Center for Advanced Studies possible. I have also
benefited considerably from stimulating interactions with a quite large number
of graduate students and post-doctoral associates at the University of Oslo.

I would like to thank Fereydoon Family, Joachim Krug, Leonard Sander,
Lorraine Siperko, Tamas Vicsek and Stephanie Wunder for making valuable
comments on a draft of this book and for making suggestions that have
led to substantial improvements. I am also grateful to many colleagues and
collaborators who have contributed figures; they are acknowledged in the figure
captions. Many of the figures have been provided by graduate students in the
Cooperative Phenomena Group at the University of Oslo and illustrate various
aspects of their own research.

Paul Meakin

Oslo, Norway
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Chapter 1

Pattern Formation Far From Equilibrium

The diversity of the natural shapes that surround us has a profound impact
on the quality of our lives. For this reason alone, it is not surprising that the
origins of these shapes have been the subject of serious study since antiquity.! It
has long been believed that a quantitative characterization of natural forms is
an important step towards understanding their origins and behavior. Unfortu-
nately, there have, until recently, been relatively few general approaches towards
the quantitative description of the complex, disorderly patterns that are char-
acteristic of most natural phenomena. The essentially non-equilibrium nature
of most pattern-formation processes has also contributed to the comparatively
slow development of this field. The systematic and generally well understood '
techniques of equilibrium statistical mechanics cannot be applied to the majority
of pattern-formation processes.

In the past one to two decades, the outlook has improved substantially.
The pioneering, interdisciplinary work of B. Mandelbrot [2] has demonstrated
that mathematical concepts, once believed to be of no possible relevance to
the real world, can provide us with new ways of describing and thinking
about an amazingly broad range of structures and phenomena. In addi-
tion, the scaling concepts that were originally applied to a relatively narrow
range of problems such as critical phenomena [3] and the structure of macro-
molecules [4] have been successfully applied to a very much broader range of
problems. In many cases, the fractal geometry approach developed by Man-

1. For example, references to the six-fold form of snowflakes, that go back many centuries,

can be found in the commentary by Mason in Hardie’s translation of Kepler’s work on
snowflakes [1].
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delbrot can be used to provide a more intuitive, geometric interpretation of
scaling behavior. This has brought a measure of intellectual democracy to
previously arcane areas of physics and has enabled physicists to contribute
to a wide range of important problems outside of the traditional confines of
physics.

Many isolated early applications of the fractal approach to physical phenom-
ena can be found. For example, in 1926 Richardson [5] asked the question
“Does the wind possess a velocity? ” and suggested that the distance x traveled
by an air “particle” in time t may have to be described “by something rather
like Weierstrass’s function

x =kt + % (1/2)" cos(5"nt).” (1.1)

The Weierstrass—Mandelbrot function, a generalization of equation 1.1, de-
scribed in chapter 2, is now widely recognized as an example of a self-affine
fractal function. Richardson went on to describe studies of the dispersion of
tracers in the atmosphere and suggested that this process could be described
in terms of a length-dependent diffusion coefficient 2(¢) ~ #*/3. Richardson
argued that the projection of the density of the dispersing tracers onto a straight
line p(¢,t) could then be described by the non-Fickian diffusion equation

dp(£,t)/0t = B[D()dp(£,1)/3L])0¢. (1.2)

Richardson showed that the solution to this equation, starting with a delta
function distribution at time ¢ = 0, has the form

p(t,t) = 32 (£ 1), (1.3)

where f(x) is an exponentially decaying function. It follows, from equation 1.3,
that < £2(t) >/2 ~ t* ~ t3/2. For a particle moving with a constant velocity,
the exponent 1/v can be interpreted as a fractal dimensionality. However, for
the problem studied by Richardson, space and time are “mixed” so that the
exponent relating the distance traveled to the elapsed time cannot be given a
simple interpretation in terms of a fractal particle trajectory [6).

Similarly, the development of scaling ideas [3, 4, 7, 8], during the last three
decades, has provided new ways of quantitatively describing and better under-
standing the growth kinetics of both fractal and non-fractal objects. During the
same period, a new understanding of non-linear phenomena was developed. The
work on non-linear systems demonstrated that apparently complex processes
could have simple origins and provided paradigms that helped to motivate the
work described in this book.

Fractal geometry has been shown to provide a basis for describing objects
as small as polymer molecules and as large as the coastlines of continents.
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Mandelbrot {2, 9] has also discussed the application of fractals to the distribution
of visible matter in the universe. For some time, it has been accepted that the
distribution of visible matter is inhomogeneous and can be described in terms
of a fractal dimensionality of D =~ 1.25 on “short” length scales, less than the
“galaxy correlation length” of about 5 Mpc.? The ideas that there may be no
galaxy correlation length and that the distribution might be fractal out to much
longer length scales have been the subject of heated controversy. Some aspects
of this problem are discussed in chapter 2.

During the past 15 years, the “big bang” theory for the creation of the
universe has been seriously challenged by an inflationary model [10, 11, 12] with
an inherently fractal nature. This scenario suggests a fractal universe of almost
unlimited size.

Most of the applications discussed in this book are much more “down to
Earth”. However, it is interesting that theoretical and modeling approaches,
similar to those used to simulate non-equilibrium growth and aggregation pro-
cesses (chapters 3 and 4) and surface growth (chapter 5), have been pro-
posed for the evolution of galaxies [13, 14, 15] and galaxy distributions
{16, 17].

While the major applications of fractal geometry have been in the physical
and life sciences, many interesting examples have been found that are related
to human activities. Examples include the form of urban centers [18, 19], the
distribution of weather monitoring stations [20, 21, 22}, gravity stations [23, 24]
and railroad networks. These fractal distributions did not come about as a
result of a design process, but, in some cases, a fractal distribution may be
advantageous [25].

It has also been suggested that the distributions of rapidity,’ characterizing the
particles generated by high energy collisions, including hadron—hadron, hadron—
nucleus and nucleus—nucleus collisions, and cosmic shower events may have a
multifractal character [26, 27, 28, 29, 30, 31, 32]. This has been interpreted in
terms of a random cascade model [33].

Fractal geometry has also been used to describe the distribution of events in
time. In the case of discrete events, the fractal dimensionality D of the set of
times {t;} can be measured. Examples of cases in which this approach appears
to be of value include the distribution of reversals in the Earth’s magnetic field
(D ~ 0.89 [34]) and the temporal distribution of earthquakes in a region of
limited size (0.12 < D < 0.26 [35]).

2. 5Mpc is 5 megaparsecs, where 1 parsec is the distance at which the mean radius of the
Earth’s orbit subtends an angle of 1second, 1 pc ~ 3.2light years =~ 3 x 1016 m.

3. The rapidity y is defined as y = (1/2)In[(E + pL)/(E — pr)}, where E is the energy of an
emitted particle and py is the component of its momentum along the collision axis. In
practice, the pseudo-rapidity, # = — Intan(8/2), is usually measured, where 0 is the
emission angle.
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11 Power Laws and Scaling

Power law relationships play a central role in the study of fractals and scaling.
The power law function y(x), given by

y(x) = ext, (1.4)
has an important symmetry that can be expressed as
y(Ax) = c(Ax)® = cA®x® = const. - y(x). (1.5)

This describes the scale invariance of y(x) (the power law function y(x) in
equation 1.4 has the same shape on all scales). A trivial, but important,
consequence of this scale invariant symmetry is that the exponent a does not
depend on the units in which x or y are measured. Functions that satisfy the
relationship y(Ax) = A%y(x) are said to be homogeneous. The function

y(x) = 1 x* 4+ c3x® {1.6)

does not satisfy equation 1.5 and is an example of an inhomogeneous power
law. In practice, the analysis of data from simulations or experiments, in terms
of power law exponents, is based on the logarithmic version of equation 1.4

log y(x) = logc + alog x, (1.7)

so that the exponent a and the amplitude ¢ can be obtained by plotting log y(x)
against log x. The observation of a linear relationship between the logarithms
of two quantities over a sufficiently large range of scales is often considered
to provide prima facie evidence for a power law relationship between these
quantities.

In practice, this simple procedure is fraught with hazards. There is no
consensus on the standards required for establishing power law relationships
from experimental or numerical data. In some areas of physics, it has been
possible to observe linear behavior, on a log-log plot, covering more than four
orders of magnitude (powers of ten), in both the related quantities. However,
data of this quality are quite rare. To observe power law behavior over four
decades, from analysis of a recorded image of a physical object, it would be
necessary to have a digitized representation with a resolution of better than one
part in 10° (10'° pixels in a 2-dimensional image!). Such images are not routinely
available. It would, of course, be possible to extend the range of observation by
using images of parts of the structure recorded under different magnifications.
If this approach is used, care must be taken to avoid bias towards the selection
of “interesting” or even “typical” parts of the pattern.

An important example of a power law relationship is that between the mass
M and the characteristic size (average diameter for example) L for a self-similar
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fractal aggregate, composed of particles with a diameter €. In this case, the mass
of the aggregate is given by

M(L,€) =~ Com(L/€)P, (1.8)

where m is the mass of a single particle (m ~ pe?, where d is the Euclidean
dimensionality of the particle and p is the particle density) and Co is a geo-
metrical constant of order 1. The exponent D, in equation 1.8, is the fractal
dimensionality. Very often, the dependence of the mass on L, when all other
quantities are held fixed, is the main focus of interest. In this case, a “shorthand”
version of equation 1.8

M~ LP (1.9)

is used. However, it should always be remembered that this equation “stands in”
for the dimensionally balanced, or dimensionally homogeneous, equation 1.8.
In equation 1.9, and others like it, the symbol “~” should be interpreted as
meaning “scales as”.

This book focuses attention on the power law part of equations like 1.8. In
practice, the “amplitude” (c in equation 1.4) is important and embodies the “real
physics” behind power law relationships. In many phenomena, the exponents are
universal (invariant to small changes in the physical process or model). Under
these conditions, the amplitudes provide the only means to control physical
properties and behavior. However, important insights can be obtained from the
scaling relationships, described by equations such as 1.9. The amplitudes are
omitted (some would say perversely) from almost all of the equations in this
book, even when they are well known and/or easily calculated. In most cases,
it is much more difficult to calculate the amplitude than the exponent. In many
practical situations, the scaling relationship y(x) ~ x¢ implied by equations such
as 1.9 is all that is required. By ignoring the amplitudes, a much broader range
of phenomena can be discussed, so that the power and simplicity of the scaling
approach is emphasized. The situation here is similar to that encountered in
applications of the quantum theory of angular momentum. In this case, the
matrix elements needed to calculate properties of physical interest can be divided
into two parts, according to the Wigner—Eckart theorem [36, 37]: a part called
the reduced matrix element, analogous to the amplitude ¢ in equation 1.4, that
depends on the physical details and that is, in most cases, difficult to calculate,
and a part that depends only on the angular momentum quantum numbers,
which can easily be calculated using group theory.

Phenomena that require the description of the properties of a large ensemble
of similar structures, rather than a single sample, are frequently encountered. In
this case, equation 1.8 should be replaced by

< M(L,e) >~ Com(L/€)®, (1.10)



