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PREFACE

This is the third edition of Principles of Real Analysis, first published in 1981.
The aim of this edition is to accommodate the current needs for the traditional
real analysis course that is usually taken by the senior undergraduate or by the
first year graduate student in mathematics. This edition differs substantially from
the second edition. Each chapter has been greatly improved by incorporating new
material and by rearranging the old material. Moreover, a new chapter (Chapter 6)
on Hilbert spaces and Fourier analysis has been added.

The subject matter of the book focuses on measure theory and the Lebesgue
integral as well as their applications to several functional analytic directions. As in
the previous editions, the presentation of measure theory is built upon the notion of
a semiring in connection with the classical Carathéodory extension procedure. We
believe that this natural approach can be easily understood by the student. An extra
bonus of the presentation of measure theory via the semiring approach is the fact
that the product of semirings is always a semiring while the product of o -algebras is
asemiring but not a o -algebra. This simple but important fact demonstrates that the
semiring approach is the natural setting for product measures and iterated integrals.

The theory of integration is also studied in connection with partially ordered
vector spaces and, in particular, in connection with the theory of vector lattices.
The theory of vector lattices provides the natural framework for formalizing and
interpreting the basic properties of measures and integrals (such as the Radon—
Nikodym theorem, the Lebesgue and Jordan decompositions of a measure, and the
Riesz representation theorem). The bibliography at the end of the book includes
several books that the reader can consult for further reading and for different
approaches to the presentation of measure theory and integration.

In order to supplement the learning effort, we have added many problems (more
than 150 for a total of 609) of varying degrees of difficulty. Students who solve a
good percentage of these problems will certainly master the material of this book.
To indicate to the reader that the development of real analysis was a collective effort
by many great scientists from several countries and continents through the ages,

we have included brief biographies of all contributors to the subject mentioned in
this book.



X PREFACE

We take this opportunity to thank colleagues and students from all over the
world who sent us numerous comments and corrections to the first two editions.
Special thanks are due to our scientific collaborator, Professor Yuri Abramovich,
for his comments and constructive criticism during his reading of the manuscript
of this edition. The help provided by Professors Achille Basile and Vinchenco
Aversa of Universita Federico II, Napoli, Italy, during the collection of the bio-
graphical data is greatly appreciated. Finally, we thank our students (Anastassia
Baxevani, Vladimir Fokin, Hank Hernandez, Igor Kuznetsov, Stavros Muronidis,
Mohammad Rahman, and Martin Schlam) of the 1997-98 TUPUI graduate real

analysis class who read parts of the manuscript and made many corrections and
improvements.

C. D. ALIPRANTIS and O. BURKINSHAW
West Lafayette, Indiana
June, 1998



PRINCIPLES OF
REAL ANALYSIS
Third Edition



Principles of Real Analysis, 3rd ed.
Charalambos D. Aliprantis, Owen Burkinshaw
ISBN: 978-0-12-050257-8

Copyright ©1998 by Elsevier. All rights reserved.

Authorized English language reprint edition published by the Proprietor.
Reprint ISBN: 978-981-272-256-0
Copyright ©2008 by Elsevier (Singapore) Pte Ltd. ~ All rights reserved.

Elsevier (Singapore) Pte Ltd.
3 Killiney Road
#08-01 Winsland Hose I
Sinagpore 239519
Tel: (65) 6349-0200
Fax: (65) 6733-1817

First Published 2008
2008 EVIIR

Printed in China by Elsevier (Singapore) Pte Ltd. under special arrangement
with Beijing World Publishing Corporation. This edition is authorized for
sale in China only, excluding Hong Kong SAR and Taiwan. Unauthorized
export of this edition is a violation of the Copyright Act. Violation of this

Law is subject to Civil and Criminal Penalties.

A B3 B ENR 1 Elsevier (Singapore) Pte Ltd. HAUHER B4 hARA AL
A AR E AR N MEET. ARIUREFEEA (FREFERH
ABEEGE) HRAFRNEE. RSFTHD, WHBREFERE #
ZAHR.



CONTENTS

Preface

CHAPTER 1. FUNDAMENTALS OF REAL ANALYSIS

Elementary Set Theory
Countable and Uncountable Sets
The Real Numbers

Sequences of Real Numbers
The Extended Real Numbers
Metric Spaces

Compactness in Metric Spaces

NN

CHAPTER 2. TOPOLOGY AND CONTINUITY

8. Topological Spaces

9. Continuous Real-Valued Functions
10. Separation Properties of Continuous Functions
11. The Stone—Weierstrass Approximation Theorem

CﬁAPTER 3. THE THEORY OF MEASURE

12. Semirings and Algebras of Sets

13.  Measures on Semirings

14.  Outer Measures and Measurable Sets

15. The Outer Measure Generated by a Measure
16. Measurable Functions

17. Simple and Step Functions

18. The Lebesgue Measure

19. Convergence in Measure

20. Abstract Measurability

14
22
29
34
48

57

57
66
80
87

93

93

98
103
110
120
126
133
146
149

vii



viii

CHAPTER 4.

CHAPTER 5.

CHAPTER 6.

CHAPTER 7.

Bibliography

CONTENTS

THE LEBESGUE INTEGRAL

21
22.
23.
24,
25.
26.

Upper Functions

Integrable Functions

The Riemann Integral as a Lebesgue Integral
Applications of the Lebesgue Integral
Approximating Integrable Functions
Product Measures and Iterated Integrals

NORMED SPACES AND L ,-SPACES

27,
28.
29.
30.
31

Normed Spaces and Banach Spaces
Operators Between Banach Spaces
Linear Functionals

Banach Lattices

L ,-Spaces

HILBERT SPACES

32.
33.
34.
35

Inner Product Spaces
Hilbert Spaces
Orthonormal Bases
Fourier Analysis

SPECIAL TOPICS IN INTEGRATION

36.
37.

38.
39.
40.

List of Symbols

Index

Signed Measures

Comparing Measures and the
Radon—Nikodym Theorem

The Riesz Representation Theorem
Differentiation and Integration
The Change of Variables Formula

161

161
166
177
190
201
204

217

217
224
235
242
254

275

276
288
298
307
325
326
338
352
366
385
399
401

403



CHAPTER 1

FUNDAMENTALS OF REAL
ANALYSIS

If you are reading this book for the purpose of learning the theory of integration,
it is expected that you have a good background in the basic concepts of real
analysis. The student who has come this far is assumed to be familiar with set
theoretic terminology and the basic properties of real numbers, and to have a good
understanding of the properties of continuous functions.

The first section of this chapter covers the fundamentals of set theory. We have
kept it to the “minimum amount” of set theory one needs for any modemn course
in mathematics. The following two sections deal with the real and extended real
numbers. Since the basic properties of the real numbers are assumed to be known,
the fundamental convergence theorems needed for this book are emphasized. Sim-
ilarly, the discussion on the extended real numbers is focused on the needed results.
The last two sections present a comprehensive treatment of metric spaces.

1. ELEMENTARY SET THEORY

Throughout this book the following commonly used mathematical symbols will
be employed:

Y means “for all” (or “for each™);

3 means “there exists” (or “there is”);

means “implies that” (or simply “implies”);
means “if and only if.”

Il

The basic notions of set theory will be briefly discussed in the first section of this
chapter. It is expected that the reader is familiar in one way or another with these
concepts. No attempt will be made, however, to develop an axiomatic foundation
of set theory. The interested reader can find detailed treatments on the foundation

of set theory in references [8], [13], [17], and [20] in the bibliography at the end of
this book.
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The concept of a set plays an important role in every branch of modern math-
ematics. Although it seems easy, and natural, to define a set as a collection of
objects, it has been shown in the past that this definition leads to contradictions.
For this reason, in the foundation of set theory the notion of a set is left undefined
(like the points and lines in geometry), and is described simply by its properties.
In this book we shall mainly work with a number of specific “small” sets (like
the Euclidean spaces R" and their subsets), and we shall avoid making use of the
“big” sets that lead to paradoxes. Therefore, a set is considered to be a collection
of objects, viewed as a single entity.

Sets will be denoted by capital letters. The objects of a set A are called the
elements (or the members or the points) of A. To designate that an object x
belongs to a set A, the membership symbol € is used, that is, we write x € A
and read it: x belongs to (or is a member of) A. Similarly, the symbolism x ¢ A
means that the element x does not belong to A. Braces are also used to denote
sets. For instance, the set whose elements are a, b, and c is written as {a,b,c}). A
set having only one element is called a singleton.

Two sets A and B are said to be equal, in symbols A = B, if A and B have
precisely the same elements. A set A is called a subset of (or that it is included in)
aset B, in symbols A C B, if every element of A is also a member of B. Clearly,
A=Bifandonlyif AC Band B C Abothhold. If A C B and B # A, then A
is called a proper subset of B. The set without any elements is called the empty
(or the void) set and is denoted by . The empty set is a subset of every set.

If A and B are two sets, then we define

i. theunion A UB of A and B to be the set
AUB ={x: x€ A or x € B};
ii. the intersection A N B of A and B to be the set
ANB={x: x€ A and x € B};
iii. the set difference A\ B of B from A to be the set
A\B={x: x€ A and x ¢ B}.
The set A \ B is sometimes called the complement of B relative to A. Two sets A

and B are called disjoint if AN B = @.
A number of useful relationships among sets are listed below, and the reader is

expected to be able to prove them:

1. (AUB)NC=(ANC)U(BNC),
2. (ANB)UC =(AUC)N(BUC):



Section 1: ELEMENTARY SET THEORY 3

3. (AUB)\C =(A\C)U(B\C);
4. (ANB)\C =(A\C)N(B\C).

The identities (1) and (2) between unions and intersections are referred to as the
distributive laws.

We remind the reader how one goes about proving the preceding identities by
showing (1). Note that an equality between two sets has to be established, and this
shall be done by verifying that the two sets contain the same elements. Thus, the
argument for (1) goes as follows:

x€(AUB)NC <= x€AUBandxeC <= (recAorxeB)andxeC
& x€ANCorxeBNC < xe€(ANC)U(BNC).

Another useful concept is the symmetric difference of two sets. If A and B are
sets, then their symmetric difference is defined to be the set

AAB = (A\ B)U(B\ A).

The concepts of union and intersection of two sets can be generalized to unions
and intersections of arbitrary families of sets. A family of sets is a nonempty set
F whose members are sets by themselves. There is a standard way for denoting
a family of sets. If for each element i of a nonempty set /, a subset A; of a fixed
set X is assigned, then {A;};¢; (or {A4;: i € [ } or simply {A;}) denotes the family
whose members are the sets A;. The nonempty set / is called the index set of the
family, and its members are known as indices. Conversely, if F is a family of sets,
then by letting / = F and A; = i for eachi € I, we can express JF in the form
{Ailier.

If {A;}ie/ is a family of sets, then the union of the family is defined to be the set

UA,» = {x: 3i € I suchthatx € A;},

iel
and the intersection of the family by

mAi = {x: x € A; foreach i € [}.

iel

Occasionally, |, A; will be denoted by | J A; and MNies Ai by () A;. Also, if
I =IN = {1, 2, ...} (the set of natural numbers), then the union and intersection

of the family will be denoted by Une, A, and (Mhe.; An, Tespectively. The dummy
index n can be replaced, of course, by any other letter.
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The distributive laws for general families of sets now take the form

(UA,-)nB:U(Amm and (ﬂA,—)uB:ﬂ(A,-UB).

iel iel iel iel

A family of sets {A;};c; is called pairwise disjoint if for each pair i and j
of distinct indices, the sets A; and A; are disjoint, i.e., A; N A; = @. The set
of all subsets of a set A is called the power set of A, and is denoted by P(A).
Note that @ and A are members of P(A). For most of our work in this book,
subsets of a fixed set X will be considered (the set X can be thought of as a frame
of reference), and all discussions will be considered with respect to the basic
set X.

Now, let X be a fixed set. If P(x) is a property (i.e., a well-defined “log-
ical” sentence) involving the elements x of X, then the set of all x for which
P(x) is true will be denoted by {x € X: P(x)}. For instance, if X = {1,2,...}
and P(x) represents the statement “The number x € X is divisible by 2,” then
{xeX: P(x)} =1{2,4,6,...}).

If A is a subset of X, then its complement A° (relative to X) is the set A =
X\A={x € X: x ¢ A}. It should be obvious that (A°)* = A, AN A° = @, and
A U A® = X. Some other properties of the complement operation are stated next
(where A and B are assumed to be subsets of X):

A\ B =ANB"

A C B if and only if B¢ C AS;
(AU B)t = A°N BS,;

(AN B)* = AU B°.

QO EON, (LA

The identities (7) and (8) are referred to as De Morgan’s' laws. The generalized
De Morgan’s laws are going to be very useful, and for this reason we state them
as a theorem.

Theorem 1.1 (De Morgan’s Laws). For a family {A;}c; of subsets of a set
X, the following identities hold: '

iel iel iel iel

(UA,-)C=ﬂA,? and (ﬂA;)C=UA%.

! Augustin De Morgan (1806-1871), a British mathematician. He is well known for his contributions
to mathematical logic.
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Proof. We establish the validity of the first formula only, and we leave the
verification of the other for the reader. Note that

xe(UA,-) e=xg¢|JAex¢A foralliel
iel iel
> xeAf forall i e [<=x e[ A5,
iel
and this establishes the first identity. [}

By a function f from a set A to a set B, in symbols f: A — B (or A-LsB or
even x — f(x)), we mean a specific “rule” that assigns to each element x of A a
unique element y in B. The element y is called the value of the function f at x (or
the image of x under f) and is denoted by f(x), thatis, y = f(x). The element
y = f(x) is also called the output of the function when the input is x. The set A
is called the domain of f, and the set {y € B: 3x € A with y = f(x)} is called
the range of f. It is tacitly understood that the sets A and B are nonempty.

Two functions f:A — B and g: A — B are said to be equal, in symbols
f = g,if f(x) = g(x) holds true for each x € A. A function f: A — B is called
onto (or surjective) if the range of f is all of B; that is, if for every y € B there
exists (at least one) x € A such that y = f(x). The function f: A — B is called
one-to-one (or injective) if x; # x, implies f(x;) # f(x2).

Now, let f: X — Y be a function. If A is a subset of X, then the image f(A)
of A under f is the subset of Y defined by

f(A)=({yeY: 3x € A suchthat y = f(x)}.

Similarly, if B is a subset of Y, then the inverse image f ~!(B) of B under f is
the subset of X defined by f~!(B) = {x € X: f(x) € B}. Regarding images and
inverse images of sets, the following relationships hold (we assume that {A;};¢; is
a family of subsets of X and {B;};¢; a family of subsets of ¥):

9. flUicqA) = Ui F(A);

10. f(nielAi) - n,’e[f(Ai)§
11. f“l(UielB,')=Uielf_l(B,');
12. f_l(ﬂ,'elBi) = ﬂielf—l(Bi);
13. f7U(BY) = (f~'(B)".

Given two functions f: X — Y and g:Y — Z, their composition g o f is the
function g o f: X — Z defined by (g o f)(x) = g(f(x)) foreach x € X.

If a function f: X — Y is one-to-one and onto, then for every y € Y there
exists a unique x € X such that y = f(x); the unique element x is denoted by

7). Thus, in this case, a function f~': ¥ — X can be defined by f~!(y) = x,
~ whenever f(x) = y. The function f~! is called the inverse of f. Note that
(f o f~1)(y) = y for all y€eYand(f'o f)x)=xforall x € X. The latter
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relations are often written as f o f~! = Iy and flof=1Ix,whereIx:X —> X
and Iy:Y — Y denote the identity functions; that is, Ix(x) = x and Iy(y) = y
forallx e Xandy €Y.

Any function x: IN — X, where IN = {1, 2, ...} is the set of natural numbers,
is called a sequence of X. The standard way to denote the value x(n) is by x,
(called the n™ term of the sequence). We shall denote the sequence x by {x,},
and we shall consider it both as a function and as a subset of X. A subsequence
of a sequence {x,} is a sequence {y,} for which there exists a strictly increasing
sequence {k,} of natural numbers (that is, 1 < k; < k, < k3 < ---) such that
Yn = X, holds for each n.

If now {A,;}ic; is a family of sets, then the Cartesian® product IT;c; A; (or
ITA;) is defined to be the set consisting of all functions f:I — J;.; A; such that
x; = f(i) € A, foreach i € I. Such a function is called (for obvious reasons) a
choice function and quite often is denoted by (x;);; or simply by (x;).

If a family of sets consists of two sets, say A and B, then the Cartesian product

of the sets A and B is designated by A x B. The members of A x B are denoted
as ordered pairs, that is,

A X B ={(a,b): ae A and b € B}.
Clearly, (a, b) = (a,, by) ifand only if a = a; and b = b,. Similarly, the Cartesian

product of a finite family of sets {A;, ..., A,} is written as A; X --- x A, and its
members are denoted as n-tuples, that is,

Ay x---x A, ={(ay,....a,): a; € A; foreach i =1,...,n}.
Here, again (a;,...,a,) = (by,...,b,) ifand only if a; = b; fori = 1,...,n.
If Ay = Ay =.--- = A, = A, then it is standard to write A; X --- x A, as A".

Similarly, if the family of sets { A, };<; satisfies A; = A foreachi € I, then IT;¢; A;
is written as A’ that is, A’ = {f | f: 1 — A}.

e When is the Cartesian product of a family of sets {A;}ic; nonempty?

Clearly, if the Cartesian product is nonempty, then each A; must be nonempty.
The following question may, therefore, be asked:

e [feach A; is nonempty, is then the Cartesian product T1A; nonempty?

Although the answer seems to be affirmative, it is unfortunate that such a state-
ment cannot be proven with the usual axioms of set theory. The affirmative answer

2René Descartes or Cartesius (1596-1650), an influential French philosopher and mathematician.
He is the founder of analytic geometry.



