ENhiR)
JAVA'STRUCTURES

Data Structures in Java™ for the Principled
Programmer Second Edition

&

Pl eoucation] kit BHHEESMELBEHET (

Duane A. Bailey #

ATERF Hibtt

Eeme pacrbrBcon=Rimsn ‘-I'.

Jada S TRUCTURES

L i O " el W T = el

B0 sl =

= EH
Javas W e e

AFTHENHTESELBM AT (RER)

Java™ Structures

Data Structures in Java™ for the Principled Programmer

Second Edition
Z4EH) Java 1B S iR
(B 2/R)

Duane A. Bailey #

Duane A. Bailey

Java™ Structures: Data Structures in Java™™ for the Principled Programmer, Second Edition
EISBN: 0-07-239909-0

Copyright © 2003 by The McGraw-Hill Companies, Inc.

Original language published by The McGraw-Hill Companies, Inc. All Rights reserved. No part of this
publication may be reproduced or distributed by any means, or stored in a database or retrieval system, without
the prior written permission of the publisher.

Authorized English language edition jointly published by McGraw-Hill Education (Asia) Co. and Tsinghua
University Press. This edition is authorized for sale only to the educational and training institutions, and within
the territory of the People’s Republic of China (excluding Hong Kong, Macao SAR and Taiwan). Unauthorized
export of this edition is a violation of the Copyright Act. Violation of this Law is subject to Civil and Criminal
Penalties.

2 F5 35 S EAR 9 H K2 AL A S B A 3-SR BOE HHAR () A T B AR LRSI FRAE 4
NRSERE S A CREFE T EES. 8 STBX & E & B R) st # B RIS 8t . RS
AW, MAEREERE, BREELER. B

Ko URE T BEVT, TEUER RS REBOEMES.

EHTBNBEENERZRILS B 01-2003-3527

AHHEIA McGraw-Hill 2 BF{FRE, THREETFHE.
BB RS B (CIP) 811

IR LER Java 8 S HR = Java™ Structures: Data Structures in Java™ for the Principled Programmer (58 2 fR)/ [3%]
WA (Bailey, D. A.) % —EA. —dum: WHEKFHEGE 2003.10

(KRZITENHE EIELEMRID
ISBN 7-302-07415-1

[, % 10 Dl DL O BEEH — B SR — # — 33 @ Java BE BRI —ESEK—#
M—3r V. @TP311.12 @TP312

rh [pR A B 11E CIP BB T (2003) 55 092836 5

HOER E: EERFHREE 0 ub AEREEKEEHRE
http://www.tup.com.cn g8 %: 100084
#HEM: (010) 62770175 ZPRE: (010) 6277 6969

B: YR :

JentAs dut DEENRI

= byt N

FHEHIE B EALRRATHT

185X230 EDgk: 33.25

2003 4E 11 B 1R 2003 11 A% 1 KK

ISBN 7-302-07415-1/TP » 5477

1~5000

46.00 7T

e m B
‘—Il'—(.__ﬁ
B i

& N T
B 0 55 Pk

F 2

i R

BEA 21 A, HAFENLT . BEULGE RIS ENEE. EFHHLE
SR AA KR EHAREREROAL, ERBERSFPREBNY. 5%8H, 1
ABFRBERANA WHEN, DRZFSEER. HTRERSHEETHEMEHEE, AT
INBREH I E R, B BIEA AN RERE /AR EHAMNE AR EAH -

HHERFHRAEN 1996 €78, HESEZ MRA T G1F, FEIMR T “KEHHEL
HEAS GEEBD” F-RII51EEA, 23 TEANRENRIOMZF. BA 21 1,
BNABEAREEGSHEBMBRRSOAE, ACEREMLE, #—DP REBAR,
BEEBHAART, —mBEERE X ERIEEA TRERKAR I AETHIHE
HIE S B BEE LB, ARAE “RETFEHEE RS Z LB RS GEERD”,
DASREEE . IRVIIIBHER KRR E R A R BEM MR E LR S HA. EREENT
K. BEER RN ESMTENBEMRFT M, URBAHE Rt EpE e E s
EXBMARY| GEERBD” BEEH, EEARRINENTE.

B K TR
2002.10

Preface to the First Edition

“IT’S A WONDERFUL TIME TO BE ALIVE.” At least that’s what I've found
myself saying over the past couple of decades. When I first started working with
computers, they were resources used by a privileged (or in my case, persistent)
few. They were physically large, and logically small. They were cast from iron.
The challenge was to make these behemoths solve complex problems quickly.

Today, computers are everywhere. They are in the office and at home.
They speak to us on telephones; they zap our food in the microwave. They
make starting cars in New England a possibility. Everyone’s using them. What
has aided their introduction into society is their diminished size and cost, and
increased capability. The challenge is to make these behemoths solve complex
problems quickly.

Thus, while the computer and its applications have changed over time, the
challenge remains the same: How can we get the best performance out of the cur-
rent technology? The design and analysis of data structures lay the fundamental
groundwork for a scientific understanding of what computers can do efficiently.
The motivations for data structure design work accomplished three decades ago
in assembly language at the keypunch are just as familiar to us today as we
practice our craft in modern languages on computers on our laps. The focus of
this material is the identification and development of relatively abstract princi-
ples for structuring data in ways that make programs efficient in terms of their
consumption of resources, as well as efficient in terms of “programmability.”

In the past, my students have encountered this material in Pascal, Modula-2,
and, most recently, C++. None of these languages has been ideal, but each has
been met with increasing expectation. This text uses The Java Programming
Language!—“Java”—to structure data. Java is a new and exciting language
that has received considerable public attention. At the time of this writing, for
example, Java is one of the few tools that can effectively use the Internet as a
computing resource. That particular aspect of Java is not touched on greatly in
this text. Still, Internet-driven applications in Java will need supporting data
structures. This book attempts to provide a fresh and focused approach to the
design and implementation of classic structures in a manner that meshes well
with existing Java packages. It is hoped that learning this material in Java
will improve the way working programmers craft programs, and the way future
designers craft languages.

Pedagogical Implications. This text was developed specifically for use with
CS2 in a standard Computer Science curriculum. It is succinct in its approach,
and requires, perhaps, a little more effort to read. I hope, though, that this text

1 Java is a trademark of Sun Microsystems, Incorporated.

Preface to the First Edition

nim

becomes not a brief encounter with object-oriented data structure design, but
a touchstone for one’s programming future.

The material presented in this text follows the syllabus I have used for sev-
eral years at Williams. As students come to this course with experience using
Java, the outline of the text may be followed directly. Where students are new
to Java, a couple of weeks early in the semester will be necessary with a good
companion text to introduce the student to new concepts, and an introductory
Java language text or reference manual is recommended. For students that need
a quick introduction to Java we provide a tutorial in Appendix B. While the
text was designed as a whole, some may wish to eliminate less important topics
and expand upon others. Students may wish to drop (or consider!) the sec-
tion on induction (Section 4.2.2). The more nontraditional topics—including,
for example, iteration and the notions of symmetry and friction—have been in-
cluded because I believe they arm programmers with important mechanisms for
implementing and analyzing problems. In many departments the subtleties of
more advanced structures—maps (Chapter 14) and graphs (Chapter 15)—may
be considered in an algorithms course. Chapter 5, a discussion of sorting, pro-
vides very important motivating examples and also begins an early investigation
of algorithms. The chapter may be dropped when better examples are at hand,
but students may find the refinements on implementing sorting interesting.

Associated with this text is a Java package of data structures that is freely
available over the Internet for noncommercial purposes. I encourage students,
educators, and budding software engineers to download it, tear it down, build it
up, and generally enjoy it. In particular, students of this material are encouraged
to follow along with the code online as they read. Also included is extensive
documentation gleaned from the code by javadoc. All documentation—within
the book and on the Web—includes pre- and postconditions. The motivation
for this style of commenting is provided in Chapter 2. While it’s hard to be
militant about commenting, this style of documentation provides an obvious,
structured approach to minimally documenting one’s methods that students can
appreciate and users will welcome. These resources, as well as many others, are
available from McGraw-Hill at http://www.mhhe.com/javastructures.

Three icons appear throughout the text, as they do in the margin. The
top “compass” icon highlights the statement of a principle—a statement that
encourages abstract discussion. The middle icon marks the first appearance of
a particular class from the structure package. Students will find these files at
McGraw-Hill, or locally, if they’ve been downloaded. The bottom icon similarly
marks the appearance of example code.

Finally, I'd like to note an unfortunate movement away from studying the
implementation of data structures, in favor of studying applications. In the
extreme this is a disappointing and, perhaps, dangerous precedent. The design
of a data structure is like the solution to a riddle: the process of developing the
answer is as important as the answer itself. The text may, however, be used as
a reference for using the structure package in other applications by selectively
avoiding the discussions of implementation.

Preface to the Second Edition

Since the first edition of Java Structures support for writing programs in Java?
has grown considerably. At that time the Java Development Toolkit consisted
of 504 classes in 23 packages® In Java 1.2 (also called Java 2) Sun rolled out
1520 classes in 59 packages. This book is ready for Java 1.4, where the number
of classes and packages continues to grow.

Most computer scientists are convinced of the utility of Java for program-
ming in a well structured and platform independent manner. While there are
still significant arguments about important aspects of the language (for exam-
ple, support for generic types), the academic community is embracing Java, for
example, as the subject of the Computer Science Advanced Placement Exami-
nation.

It might seem somewhat perplexing to think that many aspects of the origi-
nal Java environment have been retracted (or deprecated) or reconsidered. The
developers at Sun have one purpose in mind: to make Java the indispensable
language of the current generation. As a result, documenting their progress on
the development of data structures gives us valuable insight into the process of
designing useful data structures for general purpose programming. Those stu-
dents and faculty considering a move to this second edition of Java Structures
will see first-hand some of the decisions that have been made in the interven-
ing years. During that time, for example, the Collection-based classes were
introduced, and are generally considered an improvement. Another force—one
similar to calcification—has left a trail of backwards compatible features that
are sometimes difficult to understand. For example, the Iterator class was
introduced, but the Enumeration class was not deprecated. One subject of
the first edition—the notion of Comparable classes—has been introduced into
a number of important classes including String and Integer. This is a step
forward and a reconsideration of what we have learned about that material has
lead to important improvements in the text.

Since the main purpose of the text is to demonstrate the design and behavior
of traditional data structures, we have not generally tracked the progress of
Java where it blurs the view. For example, Java 2 introduces a List interface
(we applaud) but the Vector class has been extended to include methods that
are, essentially, motivated by linked lists (we wonder). As this text points out
frequently, the purpose of an interface is often to provide reduced functionality.
If the data structure does not naturally provide the functionality required by the
application, it is probably not an effective tool for solving the problem: search
elsewhere for an effective structure.

2 The Java Programming Language is a trademark of Sun Microsystems, Incorporated.
3 David Flanagan, et al., Java in a Nutshell, O'Reilly & Associates.

xii

Preface to the Second Edition

As of this writing, more than 100,000 individusale have searchod for and
downloaded the structure package. To facilitate using the comprehensive set
of classes with the Java 2 environment, we have provided a number of features
that support the use of the structure package in more concrete applications.
Please see Appendix C.

Also new to this edition are more than 200 new problems, several dozen
exercises, and over a dozen labs we regularly use at Williams.

Acknowledgments. Several students, instructors, and classes have helped to
shape this edition of Java Structures. Parth Doshi and Alex Glenday—diligent
Williams students—pointed out a large number of typos and stretches of logic.
Kim Bruce, Andrea Danyluk, Jay Sachs, and Jim Teresco have taught this
course at Williams over the past few years, and have provided useful feedback.
I tip my hat to Bill Lenhart, a good friend and advisor, who has helped improve
this text in subtle ways. To Sean Sandys I am indebted for showing me new
ways to teach new minds.

The various reviewers have made, collectively, hundreds of pages of com-
ments that have been incorporated (as much as possible) into this edition:
Eleanor Hare and David Jacobs (Clemson University), Ram Athavale (North
Carolina State University), Yannick Daoudi (McGill University), Walter Daugh-
erty (Texas A&M University), Subodh Kumar (Johns Hopkins University),
Toshimi Minoura (Oregon State University), Carolyn Schauble (Colorado State
University), Val Tannen (University of Pennsylvania), Frank Tompa (University
of Waterloo), Richard Wiener (University of Colorado at Colorado Springs),
Cynthia Brown Zickos (University of Mississippi), and my good friend Robbie
Moll (University of Massachusetts). Deborah Trytten (University of Oklahoma)
has reviewed both editions! Still, until expert authoring systems are engineered,
authors will remain human. Any mistakes left behind or introduced are purely
those of the author.

The editors and staff at McGraw-Hill-Kelly Lowery, Melinda Dougharty,
John Wannemacher, and Joyce Berendes-have attempted the impossible: to
keep me within a deadline. David Hash, Phil Meek, and Jodi Banowetz are
responsible for the look and feel of things. I am especially indebted to Lucy
Mullins, Judy Gantenbein, and Patti Evers whose red pens have often shown
me a better way.

Betsy Jones, publisher and advocate, has seen it all and yet kept the faith:
thanks.

Be aware, though: long after these pages are found to be useless folly, my
best work will be recognized in my children, Kate, Megan, and Ryan. None
of these projects, of course, would be possible without the support of my best
friend, my north star, and my partner, Mary.

Enjoy!

Duane A. Bailey
Williamstown, May 2002

Contents

Preface to First Edition
Preface to the Second Edition

Introduction
01 Read Me. e e
0.2 He Can’t Say That, Can He?

.....................

The Object-Oriented Method

1.1 Data Abstraction and Encapsulation
1.2 The Object Model
1.3 Object-Oriented Terminology
1.4 A Special-Purpose Class: A Bank Account
1.5 A General-Purpose Class: An Association
1.6 Sketching an Example: A Word List
- 1.7 Sketching an Example: A Rectangle Class
18 Imterfaces L e
1.9 WholIsthe User?
1.10 Conclusions o e
1.11 Laboratory: The Day of the Week Calculator

Comments, Conditions, and Assertions

2.1 Pre- and Postconditions 0.,
2.2 ASSErtions i e e e e e e e e e e
2.3 Craftsmanship 0.
24 Conclusions e e
2.5 Laboratory: Using Javadoc Commenting

Vectors

31 Thelnterface e
3.2 Example: The Word List Revisited
3.3 Example: Word Frequency
3.4 TheImplementation
3.5 Extensibility: A Feature
3.6 Example: L-Systems,
3.7 Example: Vector-Based Sets
3.8 Example: The Matrix Class
3.9 Conclusions v vt v e e e e
3.10 Laboratory: The Silver Dollar Game

ix

xi

iv

Contents

4 Design Fundamentals

4.1 Asymptotic Analysis Tools.
4.1.1 Time and Space Complexity
412 Exampleso,
4.1.3 The Trading of Time and Space
4.1.4 Back-of-the-Envelope Estimations

4.2 Self-Reference
421 Recursion
4.2.2 Mathematical Induction

4.3 Propertiesof Design,
431 Symmetry oo
43.2 Friction

44 Conclusions o oo

4.5 Laboratory: How Fast Is Java?

5 Sorting

5.1 Approaching the Problem

52 Selection Sort L

53 Imsertion Sort,

54 Mergesort o

55 Quicksorto e e

56 RadixSort oL

5.7 Sorting Objects

5.8 Ordering Objects Using Comparators.

5.9 Vector-Based Sorting

5.10 Conclusions

6.1

6.2
6.3
6.4

A Design Method
The Interface-Based Approach
6.1.1 Design of the Interface

6.1.2 Development of an Abstract Implementation

6.1.3 Implementation
Example: Development of Generators
Example: PlayingCards
Conclusions

7 Iterators

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Java’s Enumeration Interface
The Iterator Interface
Example: Vector Iterators
Example: Rethinking Generators
Example: Filtering Iterators
Conclusions i
Laboratory: The Two-Towers Problem

5.11 Laboratory: Sorting with Comparators

Contents

8 Lists

8.1 Example: A Unique Program

8.2 Example: Free Lists

8.3 Partial

Implementation: Abstract Lists

8.4 Implementation: Singly Linked Lists
8.5 Implementation: Doubly Linked Lists
8.6 Implementation: Circularly Linked Lists
8.7 Implementation: Vectors

8.8 List Iterators

8.9 Conclusions

9 Linear Structures

9.1 Stacks
9.1.1
9.1.2

9.2 Queues
9.2.1
9.2.2
9.2.3
9.24

Example: Simulating Recursion
Vector-Based Stacks

Example: Solving a Coin Puzzle
List-Based Queues
Vector-Based Queunes
Array-Based Queues L.,

9.3 Example: SolvingMazes
94 Conclusions e
9.5 Laboratory: A Stack-Based Language
9.6 Laboratory: The Web Crawler

10 Ordered Structures
10.1 Comparable Objects Revisited

10.1.1
10.1.2

Example: Comparable Ratios
Example: Comparable Associations

10.2 Keeping Structures Ordered

10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6

The OrderedStructure Interface
The Ordered Vector and Binary Search
Example: Sorting Revisited
A Comparator-based Approach
The Ordered List
Example: The Modified Parking Lot

10.3 Conclusions e e
-10.4 Labaratory: Computing the “Best Of”

167
170
171
174
176
189
194
197
197
199
203

207
209
210
213
215
216
217
219
222
223
226
230
232
235
239

vi

Contents

11 Binary Trees 265
11.1 Terminology L o 265
11.2 Example: Pedigree Charts 268
11.3 Example: Expression Trees 269
114 Implementation L. 270
11.4.1 The BinaryTree Implementation 270

11.5 Example: An Expert System 275
11.6 Traversals of Binary Trees 278
11.6.1 Preorder Traversal 279
11.6.2 In-order Traversal 282
11.6.3 Postorder Traversal 283
11.6.4 Level-order Traversal 284
11.6.5 Recursion in Iterators 286

11.7 Property-Based Methods 287
11.8 Example: Huffman Compression 291
11.9 Example Implementation: Ahnentafel 295
11.10Conclusions 296
11.11Laboratory: Playing Gardner’s Hex-a-Pawn 301
12 Priority Queues 303
12.1 TheInterface it 303
12.2 Example: Improving the Huffman Code 305
12.3 A Vector-Based Implementation. 306
12.4 A Heap Implementation 307
12.4.1 Vector-Based Heaps 308
12.4.2 Example: Heapsort, 314
1243 SkewHeaps o o . 317

12.5 Example: Circuit Simulation 321
12,6 Conclusions e 325
12.7 Laboratory: Simulating Business 329
13 Search Trees 331
13.1 Binary Search Trees, 331
13.2 Example: Tree Sorto 332
13.3 Example: Associative Structures 333
13.4 Implementation oo 335
13.5 Splay Trees o o v v it e e 341
13.6 Splay Tree Implementation 343
13.7 An Alternative:Red-Black Trees 348
138 Conclusions o o e 351
13.9 Laboratory: Improving the BinarySearchTree 353

Contents

vii

14 Maps

14.1
14.2
14.3
14.4

14.5
14.6
14.7
14.8

Example Revisited: The Symbol Table
The Interface
Simple Implementation: MapList
Constant Time Maps: Hash Tables
14.4.1 Open Addressing
14.4.2 External Chaining
14.4.3 Generationof Hash Codes
14.4.4 Hash Codes for Collection Classes
14.4.5 Performance Analysis
Ordered Mapsand Tables
Example: Document Indexing
Conclusions o i v i i e
Laboratory: The Soundex Name Lookup System

15 Graphs

15.1
15.2
15.3

154

15.5
15.6

Al
A2

B.1
B.2

B.3

B.4

Terminology
The Graph Interface
Implementations,
15.3.1 Abstract Classes Reemphasized
15.3.2 Adjacency Matrices
15.3.3 Adjacency Lists,
Examples: Common Graph Algorithms
154.1 Reachability.,
15.4.2 Topological Sorting
15.4.3 Transitive Closure
15.4.4 All Pairs Minimum Distance
15.4.5 Greedy Algorithms
Conclusions e
Laboratory: Converting Between Units

Answers

Solutions to Self Check Problems
Solutions to Odd-Numbered Problems

Beginning with Java

A First Program
Declarations e
B.2.1 Primitive Types
B.2.2 Reference Types
Important Classes
B.3.1 TheReadStream Class
B.3.2 The PrintStream Class
B33 Strings. o
Control Constructs o o o i i e e e
B.4.1 Conditional Statements

viii Contents

B42 LoOpS . . - v o i 481

B5 Methods e 483
B.6 Inheritance and Subtypingo 484
B.6.1 Imheritance 484

B.6.2 Subtyping 485

B.6.3 Interfaces and Abstract Classes 486

B.7 Useof the Assert Command 487
B.8 Use of the Keyword Protected 488

C Collections 491
C.1 Collection Class Features 49
C.2 Parallel Features« .« ot i it i e 491
C.3 Conversion v v v e e e e e e e 492

D Documentation 493
D.1 Structure Package Hierarchy 493
D.2 Principles 495
E Environments 497
E.1 Downloading Software 497
E.2 Creating Libraries 497
E.3 Creating Project Stationery, 498

F Further Reading 501
G Glossary 503

Index 507

Chapter O

L
Introduction
Concepts: This is an important notice.
> Approaches to this material Please have it translated.
> Principles —The Phone Company

YOUR MOTHER probably provided you with constructive toys, like blocks or
Tinker Toys' or Legos. These toys are educational: they teach us to think
spatially and to build increasingly complex structures. You develop modules
that can be stuck together and rules that guide the building process.

If you are reading this book, you probably enjoyed playing with constructive
toys. You consider writing programs an artistic process. You have grown from
playing with blocks to writing programs. The same guidelines for building
structures apply to writing programs, save one thing: there is, seemingly, no
limit to the complexity of the programs you can write.

Well, almost. When writing large programs, the data structures that main-
tain the data in your program govern the space and time consumed by your
running program. In addition, large programs take time to write. Using differ-
ent structures can actually have an impact on how long it takes to write your
program. Choosing the wrong structures can cause your program to run poorly
or be difficult or impossible to implement effectively.

Thus, part of the program-writing process is choosing between different
structures. Ideally you arrive at solutions by analyzing and comparing their
various merits. This book focuses on the creation and analysis of traditional
data structures in a modern programming environment, The Java Programming
Language, or Java for short.

0.1 Read Me

As might be expected, each chapter is dedicated to a specific topic. Many
of the topics are concerned with specific data structures. The structures we
will investigate are abstracted from working implementations in Java that are
available to you if you have access to the Internet.?2 Other topics concern the

1 All trademarks are recognized.
2 For more information, see http://www.cs.villiams.edu/JavaStructures.

I lie.

Introduction

Unicycles: the
ultimate riding
structure.

“tools of the trade.” Some are mathematical and others are philosophical, but
all consider the process of programming well.

The topics we cover are not all-inclusive. Some useful structures have been
left out. Instead, we will opt to learn the principles of programming data struc-
tures, so that, down the road, you can design newer and better structures your-
self.

Perhaps the most important aspect of this book is the set of problems at the
end of each section. All are important for you to consider. For some problems
I have attempted to place a reasonable hint or answer in the back of the book.
Why should you do problems? Practice makes perfect. I could show you how to
ride a unicycle, but if you never practiced, you would never learn. If you study
and understand these problems, you will find your design and analytical skills
are improved. As for your mother, she’ll be proud of you.

Sometimes we will introduce problems in the middle of the running text—
these problems do not have answers (sometimes they are repeated as formal
problems in the back of the chapter, where they do have answers)—they should
be thought about carefully as you are reading along. You may find it useful to

have a pencil and paper handy to help you “think” about these problems on
the fly.

Exercise 0.1 Call® your Mom and tell her you're completing your first ezer-
cise. If you don’t have a phone handy, drop her a postcard. Ask her to verify
that she’s proud of you.

This text is brief and to the point. Most of us are interested in experimenting.
We will save as much time as possible for solving problems, perusing code, and
practicing writing programs. As you read through each of the chapters, you
might find it useful to read through the source code online. As we first consider
the text of files online, the file name will appear in the margin, as you see here.
The top icon refers to files in the structure package, while the bottom icon
refers to files supporting examples.

One more point—this book, like most projects, is an ongoing effort, and
the latest thoughts are unlikely to have made it to the printed page. If you
are in doubt, turn to the website for the latest comments. You will also find
online documentation for each of the structures, generated from the code using
javadoc. It is best to read the online version of the documentation for the
most up-to-date details, as well as the documentation of several structures not
formally presented within this text.

0.2 He Can’t Say That, Can He?

Sure! Throughout this book are little political comments. These remarks may
seem trivial at first blush. Skip them! If, however, you are interested in ways

3 Don’t e-mail her. Call her. Computers aren’t everything, and they’re a poor medium for a
mother’s pride.

