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FOREWORD

This IMA Volume in Mathematics and its Applications

PARALLEL SOLUTION
OF PARTIAL DIFFERENTIAL EQUATIONS

is based on the proceedings of a workshop with the same title. The work-
shop was an integral part of the 1996-97 IMA program on “MATHEMAT-
ICS IN HIGH-PERFORMANCE COMPUTING.”

I would like to thank Petter Bjorstad of the Institutt for Informatikk,
University of Bergen and Mitchell Luskin of the School of Mathematics,
University of Minnesota for their excellent work as organizers of the meeting
and for editing the proceedings.

I also take this opportunity to thank the National Science Founda-
tion (NSF), Department of Energy (DOE), and the Army Research Office
(ARO), whose financial support made the workshop possible.

Willard Miller, Jr., Professor and Director



PREFACE

The numerical solution of partial differential equations has been of
major importance to the development of many technologies and has been
the target of much of the development of parallel computer hardware and
software. Parallel computers offer the promise of greatly increased perfor-
mance and the routine calculation of previously intractable problems. The
papers in this volume were presented at the IMA workshop on the Paral-
lel Solution of PDE held during June 9-13, 1997. The workshop brought
together leading numerical analysts, computer scientists, and engineers to
assess the state-of-the-art and to consider future directions.

This volume contains papers on the development and assessment of
new approximation and solution techniques that can take advantage of
parallel computers. Topics include domain decomposition methods, paral-
lel multi-grid methods, front tracking methods, sparse matrix techniques,
adaptive methods, fictious domain methods, and novel time and space
discretizations. Applications discussed include fluid dynamics, radiative
transfer, solid mechanics, and semiconductor simulation.

We would like to thank the IMA for giving us the opportunity to hold
this workshop and the National Science Foundation (NSF), the Department
of Energy (DOE), and the Army Research Office (ARO) for providing fi-
nancial support. Individual thanks are extended to Avner Friedman and
Robert Gulliver of the IMA for coordinating, scheduling, and providing
logistic support for the workshop and to Patricia V. Brick and Dzung N.
Nguyen of the IMA for providing editorial support.

Petter Bjgrstad, Bergen, Norway

Mitchell Luskin, Minneapolis, Minnesota
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ITERATIVE SUBSTRUCTURING METHODS FOR
SPECTRAL ELEMENT DISCRETIZATIONS OF
ELLIPTIC SYSTEMS IN THREE DIMENSIONS

LUCA F. PAVARINO®* AND OLOF B. WIDLUND!

Abstract. Spectral element methods are considered for symmetric elliptic systems
of second-order partial differential equations, such as the linear elasticity and the Stokes
systems in three dimensions. The resulting discrete problems can be positive definite,
as in the case of compressible elasticity in pure displacement form, or saddle point
problems, as in the case of almost incompressible elasticity in mixed form and Stokes
equations. Iterative substructuring algorithms are developed for both cases. They are
domain decomposition preconditioners constructed from local solvers for the interior of
each element and for each face of the elements and a coarse, global solver related to
the wire basket of the elements. In the positive definite case, the condition number of
the resulting preconditioned operator is independent of the number of spectral elements
and grows at most in proportion to the square of the logarithm of the spectral degree.
For saddle point problems, there is an additional factor in the estimate of the condition
number, namely, the inverse of the discrete inf-sup constant of the problem.

Key words. linear elasticity, Stokes problem, spectral element methods, mixed
methods, preconditioned iterative methods, substructuring, Gauss-Lobatto-Legendre
quadrature.

AMS(MOS) subject classifications. 65N30, 65N35, 65N55.

1. Introduction. The goal of this paper is to formulate and study
iterative substructuring methods for symmetric elliptic systems of second-
order partial differential equations in three dimensions. Important ex-
amples, which are considered in some detail, are the equations of linear
elasticity and Stokes. We consider conforming spectral finite element dis-
cretizations based on a Galerkin formulation of the problem and Gauss-
Lobatto-Legendre quadrature. The resulting discrete systems are either
positive definite, as in the case of compressible elasticity in pure displace-
ment form, or of saddle point form, as in the case of almost incompressible
elasticity in mixed form and Stokes problems. For these three cases, we in-
troduce iterative substructuring algorithms which extends our earlier work

*Department of Mathematics, University of Milano, Via Saldini 50, 20133 Mi-
lano, ITALY (pavarino@ares.mat.unimi.it). URL: http://ipv512.unipv.it/~webmat2/
pavarino/pavarino.html. This work was supported by I.A.N-CNR, Pavia and by the Na-
tional Science Foundation under Grant NSF-CCR-9503408. Work on this project began
when both of the authors were in residence at the Institute for Computer Applications
in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA
23681-0001 and were supported by NASA Contract No. NAS1-19480.

tCourant Institute of Mathematical Sciences, 251 Mercer Street, New York, N.Y.
10012 (widlund@cs.nyu.edu). URL: http://cs.nyu.edu/cs/faculty /widlund /index.html.
This work was supported in part by the National Science Foundation under Grants
NSF-CCR-9503408 and in part by the U.S. Department of Energy under contract DE-
FG02-92ER25127.
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{30, 33] on scalar second-order elliptic equations. We recall that iterative
substructuring methods are domain decomposition algorithms, in which we,
implicitly, solve a reduced Schur complement system that is obtained by
eliminating the variables interior to all the subregions into which the given
region has been divided; cf., e.g., Smith, Bjgrstad, and Gropp [38] or Dryja,
Smith, and Widlund [12]. We consider iterative substructuring methods of
wire basket type, where a preconditioner for the Schur complement is built
from local solvers for each face (shared by two elements) and a coarse solver
related to the wire basket (the union of the edges and the vertices of the
elements). The main result for positive definite problems is a bound on
the condition number of the preconditioned operator, which is indepen-
dent of the number of spectral elements and is bounded from above by the
square of the logarithm of the spectral degree. For saddle point problems,
the reduced Schur complement is itself a saddle point problem, involving
the interface unknowns and piecewise constant Lagrange multipliers. We
then use a Krylov space method with a block-diagonal or block-triangular
preconditioner using our wire basket preconditioner for the interface block.
The main result for saddle point problems is a bound on the condition
numbers of the preconditioned operators, which in this case is the product
of a polylogarithmic factor and the inverse of inf-sup constant of the prob-
lem. Proofs of our results and additional details will be presented in two
articles; see [31, 32].

We note that other iterative substructuring methods have been pro-
posed in recent years. For positive definite systems, see, e.g., Mandel
(26, 27], Le Tallec [22], and Farhat and Roux [16] and for saddle point prob-
lems, see Bramble and Pasciak [5}, Quarteroni [34], Fischer and Rgnquist
[17], Maday, Meiron, Patera, and Rgnquist [24], Regnquist [35], Le Tallec
and Patra {23], and Casarin [10]. We also note that alternative iterative
methods have been considered for saddle point problems, such as Uzawa’s
algorithm, multigrid methods, block-diagonal and block-triangular precon-
ditioners; see, e.g., Elman [13, 14], Brenner [6], Klawonn [20], and the
references therein.

The rest of the paper is organized as follows. In Section 2, we introduce
the three elliptic systems which will serve as model problems throughout
the paper: compressible linear elasticity in pure displacement form, incom-
pressible and almost incompressible linear elasticity in mixed form, and the
Stokes system. In Section 3, the spectral element discretization of these
systems and GLL quadrature are described briefly. In Section 4, we intro-
duce some extension operators from the interface that are needed in the
construction of our preconditioners: the discrete harmonic, elastic, Stokes
and mixed elastic extensions. An additional extension operator associated
with the wire basket is also introduced. In Section 5, we describe our
wire basket preconditioner for positive definite systems, both in matrix
and variational form, and formulate the main result on the condition num-
ber of the preconditioned operator. In Section 6, we turn our attention to
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saddle point problems, starting with the description of the basic substruc-
turing technique the use of which leads to a saddle point Schur complement.
We then study the stability of this Schur complement problem and intro-
duce block preconditioners built on our wire basket preconditioner for the
positive definite case. Our main results for both the Stokes and and the
incompressible elasticity problems are also formulated. Section 7 concludes
the paper with results of some of our numerical experiments for problems
in three dimensions.

2. Model elliptic systems. In this section, we will introduce three
symmetric elliptic systems: compressible linear elasticity in pure displace-
ment form, incompressible and almost incompressible linear elasticity in
mixed form, and the Stokes system. The first is coercive, while the other
two provide examples of saddle point problems. We will work with spectral
element discretizations of these systems and introduce and study iterative
substructuring methods for these concrete cases. However, the same tech-
niques can be applied to other well-posed symmetric elliptic systems as
well.

Throughout the paper, we will denote vector quantities by bold face
characters.

2.1. Compressible linear elasticity in pure displacement form.
Let Q@ C R® be a polyhedral domain, let [y be a nonempty subset of its
boundary, and let V be the Sobolev space V = {v € H}(Q)? : v|p, = 0}.
The linear elasticity problem consists in finding the displacement u € V of
the domain 2, fixed along Iy, resulting from a surface force of density g,
along I'; = 852 — Iy, and a body force f:

a(u,v) =2u f;e(u): e(v) dz + A f, divu divv dz

(1)
=<F,v> VvevV.

Here A and 4 are the Lamé constants, ¢;;(u) = ;(gu, %) the linearized
™
strain tensor, and the inner products are defined as '
3 3
Z Z €ij(u)eij(v),
=1 j=1

<F,v> = /Zf.v,da:+/ Zg,v.ds

=1 T1 =1
This pure displacement model is a good formulation for compressible ma-

terials, for which the Poisson ratio v = T)\)"‘F’—_)- is strictly less than 1/2,
u

e.g., v < 0.4; see, e.g., Ciarlet [11] for a detailed treatment of nonlinear

and linear elasticity.
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2.2, Almost incompressible linear elasticity in mixed form.
When )\ approaches infinity, the pure displacement model describes ma-
terials that are almost incompressible. In terms of the Poisson ratio v =
5()\_/:-—_)’ such materials are characterized by values of v close to 1/2. It
is wellf‘known that when low order, h-version finite elements are used in
the discretization of (1), locking can cause a severe deterioration of the
convergence rate as h — 0; see, e.g., Babuska and Suri [1]. If the p-version
is used instead, locking in u is eliminated, but it could still occur in quan-
tities of interest such as Adivu. Moreover, the stiffness matrix obtained
by discretizing the pure displacement model (1) has a condition number
that goes to infinity when v — 1/2. Therefore, the convergence rate of
any iterative method must also be expected to deteriorate rapidly as the
material becomes almost incompressible.

Locking can be eliminated by introducing a space of Lagrange multi-
pliers U = L?(f2) and the new variable p = —\divu € U and by replacing
the pure displacement problem with a mixed formulation:

Find (u,p) € V x U such that

Zp/e(u):e(v)dz-/divvpdx =<F,v> VveV
0 Q

—/divuqu—l/pqda:
o AlJa

see Brezzi and Fortin [7]. Using the notations,

(2)

I

0 VqeU;

e(u,v) = 2;;/06(11) : €(v) dz,

b(v,q) = - /ﬂ divv q dz, c(p,q) = /Q pq dz,

the problem takes the following form:
Find (u,p) € V x U such that

e(u,v) + b(vi;p) = <F,v> VveV

® 1
b(“vQ) - Xc(p1Q) = 0 qu U.

When A — oo (or, equivalently, v — 1/2), we obtain the limiting problem
for incompressible linear elasticity; we then simply drop the appropriate
term in (3).

2.3. The generalized Stokes system. In case of homogeneous
Dirichlet boundary conditions on the whole boundary 39, problem 2)
is equivalent to the following generalized Stokes problem (see Brezzi and
Fortin [7]):
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Find (u,p) € V x U such that

s(u,v) + b(v,p) = <F,v> WweV
(4)

b(u, q) c(p,g) = 0 VgeU.

1
At p
Here,

s(u,v) = p/ Vu: Vv dz,
0
and U is now defined by
U=LQ) ={qge L}Q): / gdz = 0},
o

since it can be shown that the pressure will have a zero mean value as a
consequence of u vanishing on the boundary of 2. The penalty term in
(4) can also originate from stabilization techniques or penalty formulations
for Stokes problems. The classical Stokes system, describing the velocity u
and pressure p of a fluid of viscosity u, can be obtained from (4) by letting
A — oo; again we simply drop one of the terms in formula (4). We refer
to Girault and Raviart [18] for an introduction to the Stokes and Navier-
Stokes equations and their finite element discretization. See also Yang [40)
for an alternative formulation of saddle point problems.

3. Spectral element methods. Let (s be the reference cube
(-1,1)3, let Qn(Qes) be the set of polynomials on (s of degree n in
each variable, and let P,(Qef) be the set of polynomials on Qrer of to-
tal degree n. We assume that the domain 2 can be decomposed into N
nonoverlapping finite elements ;, each of which is an affine image of the
reference cube. Thus, ; = ¢;(€er), where @; is an affine mapping. The
displacement is discretized, component by component, by conforming spec-
tral elements, i.e. by continuous, piecewise polynomials of degree n:

Vr={veV:ulgod¢€ Qn(Rer), i=1,---,N, k=1,2,3}.

The pressure space can be discretized by piecewise polynomials of degree
n—2:

u" = {q € L(ZJ(Q) : 11|n.» op; € Qn—z(nref), 1= 1)'“)N}~

We note that the elements of U™ are discontinuous across the boundaries
of the elements ;. This choice for U™ gives us the ¢, — @,—2 method,
proposed by Maday, Patera, and Rgnquist [25] for the Stokes system; see
further Subsection 3.3 for a discussion of the stability of this method.

Another choice of the discrete pressure space is given by piecewise
polynomials of total degree n — 1:

{g€U:qgla, o F; € Poey(Dyes).i=1,---,N}.
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This choice has been analyzed in Stenberg and Suri [39] and is known as
the @, — P,_; method. For P,,_; a standard tensorial basis does not exist
but other bases, common in the p-version finite element literature, can be
used. We will not work extensively with this space in this paper.

Other interesting choices for U™ have been studied in Canuto [8] and
Canuto and Van Kemenade [9] in connection with stabilization techniques
for spectral elements using bubble functions.

3.1. GLL quadrature. Denote by {;,§;,£x}]; x—o the set of GLL
points of the reference cube [-1,1]3, and by o; the quadrature weight
associated with {;. Let /;(x) be the Lagrange interpolating polynomial
that vanishes at all the GLL nodes except &; where it equals one. The basis
functions on the reference cube are then defined by a tensor product as

Li(@)(y)k (2), 0<i,5,k<n.

This is a nodal basis, since any element of Q,,(€ef) can be written as

n

u(z’y, ZZZ Ené]»ﬁk l(m) ( ) ( )

=0 j=0 k=0

The reference element can be decomposed into its interior, six faces, twelve
edges, and eight vertices. The union of its edges and vertices is called the
wire basket of the element and is denoted by W,.s. Analogously, each basis
function can be characterized as being of interior, face, edge, or vertex type:

- interior: i, 7,k # 0 and # n;

— face: exactly one index is O or n;

- edge: exactly two indices are 0 and/or n;

- vertex: all three indices are 0 and/or n.
Each component of the displacement model, and generally any element
in V", can be written as the sum of its interior, face, edge, and vertex
components,

u=ur+ur+ug+uy,

where each term is expressed in terms of the corresponding set of basis
functions.

For the space U™, we can similarly use the very convenient basis con-
sisting of tensor-product Lagrangian nodal basis functions associated with
just the internal GLL nodes; we note that the degree of the polynomials
are now n — 2. Another basis associated with Gauss-Legendre nodes has
been considered in [17] and [24].

We now replace each integral of the continuous models (3) and (4) by
using GLL quadrature. On Qs,

(u v "Qref ZZZ Ehf]agk U(&aﬁjv{k)asajah

1=0 =0 k=0
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and in general on 2

N n
(V)= Y (wod,)(&, &\ &) o bs) (&, &> )l sloiojon,

s=11,5,k=0

where |J,| is the determinant of the Jacobian of ¢,. The first inner product
is uniformly equivalent to the standard L;—inner product on @, (Qref)-
Thus, it is shown in Bernardi and Maday (3, 4] that

(5) ||"“'i,(n,.,) < (U, ¥)na,. < 27”""%,([’1,4) Yu € Qn(Qrer)-

These bounds imply an analogous uniform equivalence between the Lz(f2)-
norm (and the H!(f2)-seminorm) and the corresponding discrete norm (and
seminorm) based on GLL quadrature.

3.2. The discrete problems. Applying GLL quadrature to the pure
displacement model (1), we obtain the discrete bilinear form

an(u,v) = 2u(e(u) : €(v))n,0 + A(divu, divv), q,

and the discrete elasticity system in pure displacement form:
Find u € V™ such that

(6) an(u,v) =<F,v>,q Vv e V"

An analysis of the spectral element discretization for the Laplacian and
Stokes problems can be found in Bernardi and Maday [3, 4] and in Maday,
Patera, and Regnquist [25]. The same techniques can be applied to pro-
vide an analysis and error estimates for the linear elasticity problem. The
stiffness matrix K associated to the discrete problem (6) is symmetric and
positive definite. It is less sparse than the stiffness matrices obtained by
low-order finite elements, but still well-structured, and the corresponding
matrix-vector multiplication is relatively inexpensive if advantage is taken
of its tensor product structure; see, e.g., Bernardi and Maday ([3].

For an interior element, a,(-,-) has a six-dimensional null space N,
spanned by the rigid body motions r; :

N =span{r;, j=1,---,6}.

On ¢, the r; are given, component-wise, by three translations
1 0 0

(7) ry = 0 y F2 = 1 y I3 = 0 3
0 0 1

and three rotations

0 x3 o
(8) ry = T3 y Is = 0 y T = - .
—Z3 - 0
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It is easy to show that both the divergence and the linearized strain tensor
of these six functions vanish.

Applying GLL quadrature to the mixed models (3) and (4), we obtain
the discrete bilinear forms

2/‘(6(11) : C(V))n,n, s,,(u, V) = #(Vll: Vv)n,ﬂ)
bn(uvp) = "(divuap)n,ﬂa Cn(p,Q) = (p,Q)n,fb

en(u,v)

We note that, since GLL quadrature in each variable is exact for polynomi-
als of degree up to and including 2n—1 and we are using affine images of the
reference cube, the last two bilinear forms are exact, i.e. b,(u,p) = b(u, p)
and Cn(pa Q) = C(pv Q)) Vue V7, p,ge U™

We can now obtain the discrete elasticity system in mized form:
Find (u,p) € V" x U™ such that

ea(u,v) + ba(v,p) = <F,v>,q VYveVn

(9)

ba(w0) — Fen(ra) 0 vgeur
In the incompressible case, we remove the cp(-,-) term, since 1/A = 0.
The discrete generalized Stokes problem is an analogous saddle point prob-
lem, with sn(-,) in place of en(,-) and the penalty parameter equal to
/(A + p).

These are all saddle point problems, and they include a penalty term
in the elasticity and generalized Stokes case. Using, for simplicity, the same
notation for functions and their coefficient vectors, we can write the saddle
point problems in matrix form as

(10) [3]=5 % ][3]=[0]

where A, B, and C are the matrices associated with sn(-,-) or en(,-), and

with b (-,-), and cn(,-), respectively. The penalty parameter is t2 = X for

1
elasticity problems and t? = T for generalized Stokes problems. The

stiffness matrix K is now symmetric and indefinite.

In the following, we will also use ¢ > 0 and C < +oo to denote
generic constants in our inequalities; it will be clear from the context if
we are referring to generic constants or to the bilinear form ¢(-,-) and the
associated matrix C.

3.3. The inf-sup condition for spectral elements. The conver-
gence of mixed methods depends not only on the approximation properties
of the discrete spaces V* and U™, but also on a stability condition known
as the inf-sup (or LBB) condition; see, e.g., Brezzi and Fortin [7]. While
many important h-version finite elements for Stokes problems satisfy the



