International Congress Series 545

Scanning Electron Microscopy in Cell Biology and Medicine

Editors:

K. TANAKA

T. FUJITA

SCANNING ELECTRON MICROSCOPY IN CELL BIOLOGY AND MEDICINE

Proceedings of the International Symposium on SEM in Cell Biology and Medicine Kyoto, 11-15 May, 1980

Edited by:
Keiichi TANAKA
Tsuneo FUJITA

Excerpta Medica, Amsterdam-Oxford-Princeton

© EXCERPTA MEDICA / BIOMEDICAL RESEARCH FOUNDATION 1981 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without permission in writing from the publisher.

International Congress Series No. 545 ISBN Excerpta Medica 90 219 0477 2 ISBN Elsevier North-Holland 0 444 90191 4

Library of Congress Catalog Card Number 81-4799

Publishers:

Excerpta Medica 305 Keizersgracht 1000 BC Amsterdam P. O. Box 1126 Biomedical Research Foundation Kanda, Chiyodaku Tokyo 101–91 P. O. Box 182

Sole Distributors for the USA and Canada: Elsevier North-Holland Inc. 52 Vanderbilt Avenue New York, N.Y. 10017

Printed in Japan

INTERNATIONAL SYMPOSIUM: SEM IN CELL BIOLOGY AND MEDICINE

May 11th-15th, 1980, Kyoto, Japan

Organized by:

Keiichi TANAKA (President)

Department of Anatomy Tottori University School of Medicine

Tsuneo FUJITA

Department of Anatomy Niigata University School of Medicine

Yasuo HARADA

Department of Otorhinolaryngology Hiroshima University School of Medicine

Akihiro IINO

Department of Anatomy Tottori University School of Medicine

Masaru OHYAMA

Department of Otorhinolaryngology Kagoshima University School of Medicine

Junichi TOKUNAGA

Department of Microbiology Kagoshima University School of Dentistry

Preface

The morphologists researching the fine structure of organisms have always desired to observe more and more minute structures. The transmission electron microscope has to a large extent answered this desire and contributed to clarifying the fine structure of cells and tissues. We who are living in the three-dimensional world, however, have felt unsatisfied with the flat, plain images obtained from the transmission electron microscopy of ultra-thin sections.

To fulfill this need, the scanning electron microscope provides vivid three-dimensional images. In the beginning it was ridiculed as an expensive toy of morphologists because of its poor resolving power and unrefined techniques of specimen preparation. Gradually, however, the instruments and techniques have been advanced and scanning electron microscopy has become one of the most attractive and useful methodologies in morphological research. One after another, beautiful photomicrographs revealing the three-dimensional structures of cells and tissues have been rapidly accumulated by researchers in many biomedical fields.

Ten years have passed since the scanning electron microscope became useful in the biological field. The biological and medical researchers using scanning electron microscopes feel that they have arrived at a critical point from which fresh developments should be made. In addition to this, Japanese researchers and Japanese scanning electron microscopes in this decade have made major contributions to this field. Nevertheless Japanese scientists had not had sufficient chances to exchange their findings and ideas with over-sea researchers. These are the reasons why we held the international symposium, "Scanning Electron Microscopy in Cell Biology and Medicine" in Japan.

The meeting was held in Kyoto, May 11-15, 1980, on the occasion of the Aoi-festival, one of the most popular festivals in this old capital of Japan. Eighty of the most active researchers in the world participated in this symposium with vigorous scientific discussion and intimate personal communication. We believe that the symposium achieved its purpose which was to give a clear overview on the present day status of scanning electron microscope studies of cells and tissues in order to discover ways for advancement in the field. The papers that were shared were representatives of a variety of biomedical fields and contained many high level preparation techniques and unique applications of scanning electron microscopy. The results of the symposium have strengthened the view that ultrastructural research by scanning electron microscopy, critically evaluated, will open new avenues to biological and medical study.

This volume presents the proceedings of the symposium. It is our hope that this volume will encourage the researchers interdisciplinarily and internationally, and stimulate new developments in the applications of scanning electron micrscopy.

The symposium was supported financially by the Japan Society for the Promotion of Science, the Japan World Exposition Commemorative Fund, the Kajima Foundation, Eisai Co., Ltd., Hitachi Ltd., Nissei Sangyo Co., Ltd., Hitachi Koki Co., Ltd. and Mitsubishi Heavy Industrial Ltd. We express our cordial thanks for their generous support.

We thank Mr. T. Sayama and Mr. K. Imazu of the Eisai Co., Ltd. who helped us in management of the symposium and its associated social events. Cordial thanks are due to Miss Tomoko Kawakami for her enthusiastic co-operation in managing the symposium and in editing these proceedings.

Organizers of the Symposium Editors of the Proceedings

List of Participants

Adachi, Kazuo

Department of Anatomy

Niigata University School of Medicine

Niigata, Japan

AKABORI, Hiroshi

Application Laboratory

Naka Factory, Hitachi Ltd.

Katsuta, Ibaragi, Japan

Атон, Којіго

Department of Anatomy

Tottori University School of Medicine

Yonago, Japan

Anderson, Wesley and Bettina*

Department of Veterinary Anatomy

Ohio State University

Columbus, Ohio 43210, U.S.A.

Andrews, Peter

Department of Anatomy

Georgetown University School of Medicine

Washington, D.C. 20007, U.S. A.

ARAKAWA, Masaaki

Department of Internal Medicine

Niigata University School of Medicine

Niigata, Japan

ARIMA, Eitoku

Department of Surgery

Kagoshima University School of Medicine

Kagoshima, Japan

Bredberg, Göran

Department of Audiology

Södersjukhuset

S-100 64 Stockholm, Sweden

BREIPOHL, Winrich

Institut für Anatomie

Universitätsklinikum

4300 Essen 1, Germany

DiDio, Liberato J. A.

Department of Anatomy

Medical College of Ohio

Toledo, Ohio 43699, U. S. A.

Edanaga, Masanobu

Research Laboratory

Yoshitomi Pharmaceutical Industry

Yoshitomi, Fukuoka, Japan

EVAN, Andrew P.

Department of Anatomy

Indiana University

Indianapolis, Indiana 46202, U.S.A.

FLOOD, Per R.

Institute of Anatomy

University of Bergen

Bergen, Norway

FUJITA, Hisao

Department of Anatomy

Osaka University School of Medicine

Osaka, Japan

Fujita, Setsuya

Department of Pathology

Kyoto Prefectural University of Medicine

Kyoto, Japan

Fujita, Tsuneo

Department of Anatomy

Niigata University School of Medicine

Niigata, Japan

GANNON, Bren J.

Department of Human Morphology

Flinders University of South Australia

Bedford Park, South Australia 5042

Australia

Gото, Kentaro

Department of Urology

Niigata University School of Medicine

Niigata, Japan

Haggis, G. H.

Electron Microscope Center

Chemistry and Biology Research Institute

Canada Department of Agriculture

Ottawa, Ontario K1A OC6, Canada

HAMA, Kiyoshi

Department of Micromorphology

Institute of Medical Science

Tokyo University

Tokyo, Japan

HANAMURE, Yutaka

Department of Otorhinolaryngology

Kagoshima University School of Medicine

Kagoshima, Japan

Hansson, Hans-Arne

Institute of Neurobiology

University of Göteborg Faculty of

Medicine

S-400 33 Göteborg 33, Sweden

Harada, Yasuo

Department of Otorhinolaryngology

Hiroshima University School of Medicine

Hiroshima, Japan

HATTORI, Akira

Department of Internal Medicine

Niigata University School of Medicine

Niigata, Japan

HIRANO, Minoru

Department of Otorhinolaryngology

Kurume University School of Medicine

Kurume, Japan

Hoshino, Tomoyuki

Department of Otorhinolaryngology Hamamatsu University School of Medicine Hamamatsu, Japan

IGARASHI, Yoshiharu

Department of Otorhinolaryngology Niigata University School of Medicine Niigata, Japan

IINO, Akihiro

Department of Anatomy Tottori University School of Medicine Yonago, Japan

IKUTA, Fusahiro

Department of Neuropathology Brain Research Institute Niigata University Niigata, Japan

INOUE, Taeko

Department of Dermatology Tottori University School of Medicine Yonago, Japan

Inoué, Takao

Department of Anatomy Tottori University School of Medicine Yonago, Japan

ITO, Toshio

Department of Otorhinolaryngology Kurume University School of Medicine Kurume, Japan

Izumi Tohru

Department of Internal Medicine Niigata University School of Medicine Niigata, Japan

Kashimura, Makoto

Department of Internal Medicine Niigata University School of Medicine Niigata, Japan

KAWABATA, Isuzu

Department of Otorhinolaryngology Tokyo University School of Medicine Tokyo, Japan

KARDON, Randy H.

Department of Pharmacology University of Iowa Iowa City, Iowa 52242, U. S. A.

10wa City, 10wa 32242, C

Kirschner, Robert H.
Office of the Medical Examiner
Cook County and University of Chicago
Chicago, Illinois 60637, U. S. A.

Koike, Tadashi

Department of Internal Medicine Niigata University School of Medicine Niigata, Japan

Kondo, Yoichiro

Department of Pathology Chiba University School of Medicine Chiba, Japan Krstić, Radivoj

Institut d'Histologie et d'Embryologie Université de Lausanne

1011 Lausanne, Switzerland

KÜHNEL, Wolfgang

Abteilung Anatomie der Medizinischen Fakultät

Rhein-Westf. Technische Hochschule 5100 Aachen, Germany

Kumon, Hiromi

Department of Urology Okayama University School of Medicine Okayama, Japan

Kurosumi, Kazumasa

Department of Morphology Institute of Endocrinology Gunma University Maebashi, Japan

Kusuмото, Yoshisuke

Department of Anatomy Niigata University School of Medicine Niigata, Japan

Kuwabara, Toichiro

Department of Health, Education and Welfare, Public Health Service National Institutes of Health Bethesda, Maryland 20014, U. S. A.

LEDERIS, Karl

Division of Pharmacology and Therapeutics University of Calgary, Faculty of Medicine Calgary, Alberta T2N 1N4, Canada

Li, Wenzhen

Institute of Basic Medicine Hebei Medical College Shijiazhuang, China

Lundquist, Per-Gothard
Department of Otorhinolaryngology
Karolinska Sjukhuset

Stockholm, Sweden

MAEYAMA, Takuo

Department of Otorhinolaryngology Kagoshima University School of Medicine Kagoshima, Japan

Makita, Takashi

Department of Veterinary Anatomy Faculty of Agriculture Yamaguchi University Yamaguchi, Japan

Masutani, Taeko

Department of Anatomy Fukuoka University School of Medicine Fukuoka, Japan

Mitsusніма, Akira

Department of Anatomy Tottori University School of Medicine Yonago, Japan MIURA, Kazumasa

Department of Internal Medicine Niigata University School of Medicine Niigata, Japan

Мічозні, Мазауцкі

Department of Anatomy

Fukuoka University School of Medicine Fukuoka, Japan

MOLDAY, R. S.

Department of Biochemistry University of British Columbia Vancouver, B. C. V6T 1W5, Canada

Morizono, Takaaki

Department of Anatomy

Kurume University School of Medicine Kurume, Japan

MOTTA, Pietro M.

Istituto di Anatomia Umana Normale Università di Roma

Roma, Italy

Murakami, Masahiro

Department of Anatomy

Kurume University School of Medicine Kurume, Japan

Murata, Fusayoshi

Department of Anatomy

Kagoshima University School of Medicine Kagoshima, Japan

NAGAI, Sumiré

Department of Anatomy

Tottori University School of Medicine Yonago, Japan

NAGATANI, Takashi

Electron Magnetic Instrument Design

Department

Naka Factory, Hitachi Ltd.

Katsuta, Ibaragi, Japan

NAGANO, Toshio

Department of Anatomy

Chiba University School of Medicine

Chiba, Japan

Naguro, Tomonori

Department of Anatomy

Tottori University School of Medicine

Yonago, Japan

NAKAMURA, Keiichiro

Department of Anatomy

Ehime University School of Medicine

Ehime, Japan

Nими, Masakazu

Department of Microbiology

Kagoshima University School of Dentistry

Kagoshima, Japan

Nishi, Masayo

Department of Internal Medicine Niigata University School of of Medicine Niigata, Japan Noda, Masuhiro

Department of Otorhinolaryngology Hiroshima University School of Medicine Hiroshima, Japan

OGATA, Takuro

Department of Surgery Kochi Medical School

Kochi, Japan

OGITA, Shozo

Department of Ophthalmology

Hiroshima University School of Medicine

Hiroshima, Japan

Оната, Masaaki

Department of Surgery

Nihon University School of Medicine

Tokyo, Japan

Ohno, Ikuo

Department of Otorhinolaryngology Kagoshima University School of Medicine

Kagoshima, Japan

OHTANI, Osamu

Department of Anatomy

Okayama University School of Medicine

Okayama, Japan

Онуама, Masaru

Department of Otorhinolaryngology Kagoshima University School of Medicine

Kagoshima, Japan

Onishi, Reiko

Department of Anatomy

Osaka City University School of Medicine

Osaka, Japan

OSATAKE, Hitoshi

Department of Anatomy

Tottori University School of Medicine

Yonago, Japan

Osumi, Masako

Department of Biology

Japan Women's University

Tokyo, Japan

SASAKI, Hisashi

Department of Otorhinolaryngology

Hiroshima University School of Medicine

Hiroshima, Japan

SAWADA, Hajime

Department of Anatomy

Tokyo University School of Medicine

Tokyo, Japan

SHIMADA, Tatsuo

Department of Anatomy

Medical College of Oita

Oita, Japan

Schn, Tae Joong

Department of Pathology

Kingpok University School of Medicine

Tagu, Korea

Suzuki, Junichi

Department of Otorhinolaryngology Teikyo University School of Medicine Tokyo, Japan

Suzuki, Toshimitsu

Department of Pathology

Niigata University School of Medicine Niigata, Japan

TAGASHIRA, Nobuharu

Department of Otorhinolaryngology Hiroshima University School of Medicine Hiroshima, Japan

TANAKA, Keiichi

Department of Anatomy

Tottori University School of Medicine Yonago, Japan

Tokunaga, Junichi and Michiko

Department of Microbiology

Kagoshima University School of Dentistry Kagoshima, Japan

Torigata, Saki

SEM Division

Central Laboratories

Nippon Dental College

Tokyo, Japan

Тоуоѕніма, Kuniaki

Department of Oral Anatomy

Kyushu Dental College

Kitakyushu, Japan

UEHARA, Yasuo

Department of Anatomy

Ehime University School of Medicine

Ehime, Japan

Usui, Takashi

Department of Surgery

Kochi Medical School

Kochi, Japan

YAMADA, Eichi

Department of Anatomy

Tokyo University School of Medicine

Tokyo, Japan

YAMAGATA, Kenzo

Department of Anatomy

Osaka City University School of Medicine Osaka, Japan

YAMAMOTO, Makoto

Department of Otorhinolaryngology

Kagoshima University School of Medicine

Kagoshima, Japan

Уамамото, **Torao**

Department of Anatomy

Kyushu University School of Medicine

Fukuoka, Japan

Yамамото, Toshi Yuki

Department of Anatomy

Tohoku University School of Medicine

Sendai, Japan

Yasuzumi, Fumioki

Department of Anatomy

Medical College of Miyazaki

Miyazaki, Japan

YING, Guohua

Institute of Basic Medicine

Hebei Medical College

Shijiazhuang, China

Yoshida, Katsuyuki

Department of Anatomy

Niigata University School of Medicine

Niigata, Japan

Yoshie, Sumio

Department of Anatomy

Nippon Dental College

Niigata, Japan

Yoshinari, Toshimi

Department of Pediatrics

Niigata University School of Medicine

Niigata, Japan

Yui, Ryogo

Department of Anatomy

Niigata University School of Medicine

Niigata, Japan

SCANNING ELECTRON MICROSCOPY IN CELL BIOLOGY AND MEDICINE

Contents

re	face	VII
List	of Participants	ix
Sec	tion I. Cell Surface and Dynamics	
1.	R. OHNISHI	
	Dynamics of cultured L cells as studied by cinemicroscopy and scanning electron microscopy	1
2.	M. TOKUNAGA, J. TOKUNAGA and M. NIIMI Leukocyte and macrophage movements under phagocytosis	13
3.	R. S. MOLDAY Labeling of cell surface lectin receptors for scanning electron microscopy	23
4.	H. KUMON T ₄ -Bacteriophage as a surface marker for scanning electron microscopy	41
5.	P. 2. FLOOD On the ultrastructure of mucus	49
Sec	ction II. Cell Internal Structure	
6.	G. H. HAGGIS	
	Freeze-fracture followed by thaw-fix for examination of internal cell structure	55
7.	K. TANAKA and T. NAGURO	
	High resolution scanning electron microscopy of cell organelles by a new specimen preparation method	63
8.	R. H. KIRSCHNER Characterization of isolated cell organelles by high resolution scanning electron microscopy	. 71
9.	T. INOUÉ Pinocytotic vesicles observed by scanning electron microscopy	83
10.	A. MITSUSHIMA and T. INOUÉ Centrioles and basal bodies observed by scanning electron microscopy	87
11.	A. IINO and S. NAGAI Chromatin and chromosomes observed by scanning electron microscopy	9

Sec	tion III. Endocrine and Exocrine Glands, Epithelia	
12.	M. MURAKAMI, A. SUGITA, J. ABE, M. HAMASAKI and T. SHIMADA SEM observation of some exocrine glands, with special reference to configuration of the associated myoepithelial cells	 99
13.	R. KRSTIĆ Scanning electron microscopic aspects of some endocrine glands	 103
14.	S. CORRER and P. M. MOTTA Relationship between the marginal layer and parenchymal cells of the rat adenohypophysis as revealed by scanning electron microscopy	 109
15.	T. FUJITA, S. KOBAYASHI and Y. SERIZAWA Intercellular canalicule system in pancreatic islet	 115
16.	A. P. EVAN SEM of cell surfaces following HCl and collagenase treatment	 119
17.	H. SAWADA Structural variety of basement membranes: A scanning electron microscopic study	 125
Sec	tion IV. Nerves and Muscles	
18.	R. KRSTIĆ Contribution of scanning electron microscopy to the study of brain ventricles, circumventricular organs and the pineal organ	 129
19.	Y. UEHARA, J. DESAKI and T. FUJIWARA Vascular autonomic plexuses and skeletal neuromuscular junctions: A scanning electron microscopic study	 139
20.	P. R. FLOOD Regional specializations of the plasma membrane of skeletal muscle fibers as seen in SEM	 145
21.	H. SAWADA Scanning electron microscopy of guinea pig taenia coli	 153
Sect	tion V. Reticular (Lymphoid) Tissues and Blood	
22.	T. FUJITA and M. KASHIMURA The "reticulo-endothelial system" reviewed by scanning electron microscopy	 159
23.	R. H. KARDON and R. G. KESSEL The microcirculation of lymphoid tissue in three dimensions: Scanning electron microscopy of corrosion casts of the lymph node, thymus, and peri-rectal lymphoid tissue	173
24.	T. OGATA and T. USUI A scanning electron microscopic study on the lymphatic microcirculatory spaces of the human lymph node	
25.	T. OGATA A scanning electron microscopic study on the lymphatic microcirculatory spaces of the rabbit lymph node	189
26.	M. YAMAMOTO, M. OHYAMA, Y. HANAMURE and K. OGAWA Observation of the free and fracture surfaces of the human tonsil under the scanning electron microscope	 193
27.	A. HATTORI Contribution of scanning electron microscopy to recent advances in hematology	 199

S	ection VI. Circulatory System	
28	8. B. G. ANDERSON and W. D. ANDERSON Myocardial microvasculature studied by microcorrosion casts	209
29	9. O. OHTANI Microcirculation studies by the injection replica method	219
30	0. B. J. GANNON Preparation of microvascular corrosion casting media: Procedure for partial polymerization of methyl methacrylate using ultraviolet light	227
31	1. B. J. GANNON, R. W. GORE and P. A. W. ROGERS Is there an anatomical basis for a vascular counter-current mechanism in rabbit and human intestinal villi?	235
32	2. T. SHIMADA Lymph and blood capillaries as studied by a new SEM technique	243
33	3. HA. HANSSON Aspects on reactive changes in veins to injury	249
34	4. D. J. ALLEN, L. J. A. DIDIO, G. J. HIGHISON, L. B. PUIG and E. J. ZERBINI The importance of scanning electron microscopy in surgery as seen by the study of recovered dural cardiac valve prostheses	253
35	5. T. IZUMI, K. MIURA and A. HATTORI Myofiber branching in hypertrophic human heart	265
Se	ection VII. Respiratory Tract	
36	6. M. OHYAMA, I. OHNO, T. FUJITA and K. ADACHI Surface ultrastructures of the human laryngeal mucosa -Observation by a newly developed technique of SEM cinematography	273
37	7. P. ANDREWS Characteristic surface topographies of cells lining the respiratory tract	
38	B. M. HIRANO and T. ITO Ultrastructure of laryngeal muscles	
Se	ection VIII. Urinary System	
39	9. P. ANDREWS Studies of kidney glomerular epithelial foot process loss in the nephrotic state and experimental situations	293
40	D. M. ARAKAWA, M. EDANAGA and J. TOKUNAGA Renal glomerulus. A new finding of its normal and pathological structure.	307
41		
42	2. A. P. EVAN SEM observations of intact and isolated proximal and collecting tubular cells from rat, rabbit and frog	317

Sec	tion IX. Reproductive System		
43.	P. M. MOTTA and S. MAKABE Morphodynamic changes of the mammal pathological conditions. A scanning elect		me
44.		nucosa and the endometrium	as
45.	M. MURAKAMI, A. SUGITA, T. SHIMADA, T. MORIZONO and K. NAKAMURA	M. HAMASAKI,	
46.	R. 0010	o mega, a significant	
	Surface morphology of the epithelium of h testis, ductuli efferentes and ductus epididy		
47.	T. NAGANO, O. HOJIRO and F. SUZUKI Scanning electron microscopic observations with particular reference to the spiral arran		
Sec	tion X. Sensory Organs		
48.	PG. LUNDQUIST and J. WERSÄLL Scanning electron microscope studies on to labyrinthine pathology		
49.	Y. HARADA SEM studies of the inner ear		391
50.	G. BREDBERG SEM studies of Corti's organ with special	reference to its innervation .	403
51.	Y. HARADA and N. TAGASHIRA Metabolism of otoconia		415
52.	T. HOSHINO Human organ of Corti a d its pathologica	I changes studied by SEM .	421
53.	Y. IGARASHI Ontogeny of human inner ear: A scanning	electron microscope study .	427
54.	I. KAWABATA Surface structure of the human middle ea mastoid cavity		
55.	W. BREIPOHL and M. OHYAMA Comparative and developmental SEM structure vertebrates. (Biomedical aspects and speculo	udies on olfactory epithelia	in 437
56.	M. NODA and Y. HARADA Development of olfactory epithelium in microscopy	the mouse: scanning electr	on 449
57.	I. OHNO, M JHYAMA, Y. HANAMURE and Comparative anatomy of olfactory epithel		455
58.	K. TOYOSHIMA and A. SHIMAMURA A scanning electron microscopic study of	taste buds in the rabbit	459
59.	HA. HANSSON Scanning electron microscopy of ocular str	ructures	465
60.	T. MASUTANI and M. MIYOSHI Surface fine structure of visual cells and	their arrangement in the ver	rte-
	brate retina		475

61.	S. OGITA, M Initial									ith	nel	iuı	m	of	th	ie i	со	rn	ea						479
62.	R. G. KESSE Scanni					of 1	ma	ım	ma	alia	an	ne	eu	roe	epi	ith	eli	a			:*:			 ·	483
Inde	ex of Authors				,		ě		į	ē					ě		,					,	÷	9	xix
Inde	ex of Subjects				,	(4)					:*)		*										,	į.	xxi

DYNAMICS OF CULTURED L CELLS AS STUDIED BY CINEMICROSCOPY AND SCANNING ELECTRON MICROSCOPY

REIKO OHNISHI

Department of Anatomy, Osaka City University Medical School, Abeno, Osaka 545, Japan

ABSTRACT

The dynamics of cultured L cells have been studied by phase contrast cinemicroscopy and scanning electron microscopy (SEM). The morphology and motility of an L cell greatly change through the cell cycle. During M the cell is spherical; during G1 fan-shaped; and during S and G2 polygonal. Microvilli and filopodia are greatest in number and length during M, decrease during G1, and increase again from S to G2. In contrast ruffles are prominently formed during G1, when the microvilli and filopodia decrease. Cell locomotion, closely related with the formation of ruffles, is most active during this period. Ruffles show wavy motion consisting of three stages, protrusion, standing up and retraction. Cytochalasin B stops the ruffling movement and the cell periphery assumes saw-tooth like edge. From the convex parts of the zigzag edge emerge microprojections, which move with the same periodicity and in a similar manner as the ruffles. On the other hand, colchicine treatment shifts the ruffling movement to the pseudopodial movement and diminishes the cell polarity. The roles of cytoplasmic fibers in the ruffling movement is discussed.

KEY WORDS cultured L cells / cell cycle / surface morphology / cell locomotion / ruffles / filopodia / microfilaments / microtubules / colchicine / cytochalasin B

Cultured cells on solid plane substratum have been observed by many light microscopists to show various movements. Cellular dynamics comprises division, shape changes, locomotion, etc. Intracellular dynamics includes movement of chromosomes, pinocytotic vesicles, pigment granules, mitochondria, etc.

Electron microscopically there are cytoplasmic fibers—microtubules, 10 nm-filaments, sheath-typed microfilaments, and lattice-typed microfilaments—which are considered to be closely related with the cell dynamics (12, 23, 46, 54).

The microtubules carry the chromosomes toward the both polar sites of the mitotic cell. They function as a cytoskeleton as well (8, 20). The 10 nm-filaments are associated with the

migration of cytoplasmic organelles (13, 21). The sheath-typed microfilaments are involved with the cytoplasmic streamings. The lattice-typed microfilaments are considered to be directly responsible for the cytokinesis, ruffling movement, pinocytosis, etc. (23, 45, 53). Cytochalasin B and colchicine, which disorder the lattice-typed microfilaments and microtubules respectively, can provide excellent means for analyzing the roles of the cytoplasmic fibers in the cell dynamics.

This paper will deal with the functions of the cytoplasmic fibers in the movement of the ruffles of L cells. Preceding this subject a description of cell dynamics through the cell cycle will be given.

DYNAMICS OF L CELLS THROUGH CELL CYCLE

The cell cycle is divided into four periods: mitotic (M) period, 1st gap (G1) period, DNA synthetic (S) period, and 2nd gap (G2) period. L cells originating from the murine subcutaneous connective tissue, like many other cultured cells, have a cycle period of 23 hr, of which 1 hr is for M, 9 hr for G1, 8 hr for S, and 5 hr for G2. During the cycle cells undergo the synthesis, metabolism, and decomposition of materials (34). Just as such intracellular material changes are specific to each cycle period cell,

surface morphology is characteristic to particular periods (37, 43). The dynamics and surface structures of L cells through the cycle have been observed by phase contrast cinemicroscopy and SEM.

In M period, an L cell takes a spherical form about 15 μ m in diameter (Figs. 1a, b). On the cell surface two types of projections are distinguished. One are microvilli, about 0.1 μ m in diameter and about 1 μ m in length, covering the free surface of the cell. The other are filopodia, spiny projections 0.1-0.5 μ m in diameter and 1-20 μ m in length spreading radially from the lower lateral sides of the cell. The cell is attached with the tip ends of these filopodia and microvilli to the substratum. This spherical

Fig. 1 a. Phase contrast micrograph of a living L cell in mitotic phase. ×800. b. Scanning electron micrograph of L cell comparable to that in Fig. 1a. The upper surface of the cell is covered with many long microvilli (arrowheads). There are filopodia (arrows) projected radially from the lower lateral region of the cell. ×1800. c. Fluorescent micrograph of the mitotic L cell after treatment with anti-body against tubulin. Microtubules found in the mitotic spindles. ×1,500. (Fig. 1a, 3a, 6a courtesy of Dr. Yahara) Fig. 2 a. Phase contrast micrograph of two daughter L cells immediately after cell division (G1 period). ×800. b. Scanning electron micrograph of the cells comparable to that in Fig. 2a. ×2,500