Rob Willemsen R. Frank Kooy # FRAGILE X SYNDROME ## From Genetics to Targeted Treatment Edited by ROB WILLEMSEN Erasmus MC, Rotterdam, The Netherlands R. Frank Kooy University of Antwerp, Antwerp, Belgium Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1800, San Diego, CA 92101-4495, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom Copyright © 2017 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). #### Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein. #### Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress #### British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library ISBN: 978-0-12-804461-2 For information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals Working together to grow libraries in developing countries www.elsevier.com • www.bookaid.org Publisher: Mara Conner Acquisition Editor: Melanie Tucker Editorial Project Manager: Kathy Padilla Production Project Manager: Chris Wortley Designer: Maria Inês Cruz Typeset by Thomson Digital ## FRAGILE X SYNDROME ## Contributors Han Bao Emory University School of Medicine, Atlanta, GA, United States Mark F. Bear Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States **Tamir Ben-Hur** The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel Nissim Benvenisty The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel **Elizabeth Berry-Kravis** Rush University Medical Center, Chicago, IL, United States Aditi Bhattacharya Center for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, Bangalore, Karnataka, India **Pietro Chiurazzi** Institute of Genomic Medicine, Catholic University, Rome, Italy **Jeffrey Cohen** National Fragile X Foundation, Washington, DC, United States **Lynda El-Hassar** Yale University School of Medicine, New Haven, CT, United States **Douglas W. Ethell** Molecular Neurobiology, Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona; Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States Andreas Frick Neurocentre Magendie, Pathophysiology of Neuronal Plasticity, INSERM U1215, University of Bordeaux, Bordeaux, France **Christine M. Gall** University of California, Irvine, CA, United States **Fabrizio Gasparini** Novartis Institutes for BioMedical Research, Neuroscience Discovery, Basel, Switzerland **Inbal Gazy** National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States Melanie Ginger Neurocentre Magendie, Pathophysiology of Neuronal Plasticity, INSERM U1215, University of Bordeaux, Bordeaux, France Christina Gross Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, United States Jacalyn Guy University of Oxford, Oxford, United Kingdom; McGill University, Montréal, QC, Canada Randi Hagerman MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States **Becky Hardiman** The Fragile X Society, Great Dunmow, Essex **Charles Hoeffer** Institute for Behavioral Genetics, University of Colorado, Boulder, CO, United States **Jessica E. Hunter** Center for Health Research, Portland, OR, United States Molly M. Huntsman Skaggs School of Pharmacy and Pharmaceutical Sciences and School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States Aia E. Jønch Odense University Hospital and University of Southern Denmark, Odense, Denmark **Sébastien Jacquemont** Sainte Justine Research Institute, University of Montreal, Canada **Peng Jin** Emory University School of Medicine, Atlanta, GA, United States **Richard S. Jope** University of Miami School of Medicine, Miami, FL, United States **Leonard K. Kaczmarek** Yale University School of Medicine, New Haven, CT, United States **Peter Kind** Centre for Integrative Physiology and The Patrick Wild Centre for Research into Autism, Fragile X Syndrome and Intellectual Disabilities, The University of Edinburgh, Edinburgh, United Kingdom **R. Frank Kooy** Department of Medical Genetics, University of Antwerp, Antwerp, Belgium **Julie C. Lauterborn** University of California, Irvine, CA, United States **Andrew Ligsay** Davis School of Medicine and MIND Institute, University of California, Sacramento, CA, United States Lothar Lindemann Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland Olivier J.J. Manzoni INSERM, INMED and UMR, Aix-Marseille University Marseille, Marseille, France **Henry G.S. Martin** INSERM, INMED and UMR, Aix-Marseille University Marseille, Marseille, France Montserrat Milà Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain **David L. Nelson** Baylor College of Medicine, Houston, TX, United States **Giovanni Neri** Institute of Genomic Medicine, Catholic University, School of Medicine, Rome, Italy **Daniela Neuhofer** INSERM, INMED and UMR, Aix-Marseille University Marseille, Marseille, France **Emily K. Osterweil** Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom **Jörg Richstein** Interessengemeinschaft Fragiles-X e.V., Rostock, Germany Michael R. Santoro Emory University School of Medicine, Atlanta, GA, United States Gaia Scerif University of Oxford, Oxford, United Kingdom **Sebastian S. Scharf** Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland **Stephanie L. Sherman** Emory University, Atlanta, GA, United States Harpreet Sidhu Molecular Neurobiology, Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona; The Scripps Research Institute, La Jolla, CA, United States Will Spooren Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland Laura J. Stoppel Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States Joshua Suhl Emory University, Atlanta, GA; LabCorp, Variant Sciences Group, Westborough, MA, United States **Elisabetta Tabolacci** Institute of Genomic Medicine, Catholic University, Rome, Italy **Flora Tassone** University of California, Davis; MIND Institute, University of California Davis Medical Center, Sacramento, CA, United States Sally Till Centre for Integrative Physiology and The Patrick Wild Centre for Research into Autism, Fragile X Syndrome and Intellectual Disabilities, The University of Edinburgh, Edinburgh, United Kingdom **Karen Usdin** National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States Dan Vershkov The Azrieli Center for Stem Cells and Genetic Research, Silberman Institute of Life Sciences, The Hebrew University; The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel **Stephen T. Warren** Emory University School of Medicine, Atlanta, GA, United States **Rob Willemsen** Erasmus MC, Department of Clinical Genetics, Rotterdam, The Netherlands Xiao-Nan Zhao National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States ### Foreword In 2016 it was 25 years since the identification of the *FMR1* gene and its new mutation mechanism. This book will give an overview of what has been achieved since then and gives an overview of the present knowledge of fragile X syndrome (FXS) and the gene involved. But let's go back first for a short visit into history. In 1943 Martin and Bell described a pedigree of mental defect showing sex linkage. They showed in two generations of this family 11 males with imbecility. This term was typical for those days, but has since been evaluated into mental retardation and in this century into intellectual disabilities. In 1986 John M. Opitz described the burden in the families as follows: And then as always, one stops to recollect with total astonishment and great reverence the massive burden of pain carried so patiently by the mothers, fathers, sibs, grandparents and the many others involved so closely on a daily basis with the apparent failure, defect, handicap, disability, and disappointment in the many thousands of Martin-Bell syndrome families throughout the world. Am J Med Genet 23:1–10 In 1969 Lubs noted a secondary constriction, referred to as a fragile site, which has been used to describe the syndrome as FXS. The presence of the cytogenetic expression of the fragile site was implemented as a diagnostic criterium but this was not a very reliable tool, in particular in the identification of carriers. The development of recombinant DNA technology around 1980s made the cloning and identification of disease genes possible. The close association between the syndrome in males and the fragile site at Xq27.3 indicated that the gene involved must be located at, or near to, the fragile site. Accordingly, the efforts of many different laboratories have been aimed at obtaining probes and fragments as close as possible to this fragile site, with the ultimate goal cloning the gene involved in FXS and the mutation in the disease gene. The discovery by Verkerk and coworkers in 1991 that the disease is caused by a large-scale expansion of a highly unstable trinucleotide repeat in the FMR1 gene has elucidated a new mutation mechanism of heritable unstable DNA. The gene was named FMR1 (fragile X mental retardation 1), assuming that this was the first of an unknown number of future genes that might be isolated from the X chromosome involving fragility and mental retardation. The protein missing in fragile X patients was subsequently named FMRP. In the subsequent years more than 10 diseases with unstable repeat genes have been identified, all involved in neurological disorders. The presence of an unstable repeat in the FMR1 gene has helped in direct testing in fragile X families and the identification of FRAX patients because the mutation is almost exclusively of the same type and there is an extremely low occurrence of other mutations in the disease. Since the identification of the unstable repeat in the FMR1 gene much effort has been spent to get an answer to the following questions: What is the mechanism of repeat instability? What is the timing of repeat instability during embryonal life? What is the function of the repeat in the disease gene? What are the xii FOREWORD functions of the (normal) gene product, with special focus on the brain? Clues to the mechanisms that cause the abnormalities observed in FXS were limited. Initially research progress has been slow which is in part due to the lack of brain material of patients. To gain more insight in the pathological and physiological processes, researchers focused on animal models. No natural occurring animal models for FXS have been described. Therefore transgenic mouse models for FXS have been generated in Rotterdam and Houston. These mice show characteristics of FXS and have been made available to the research community. These mice might help to learn more about the function of the FMR1 gene and the effect that the lack of the protein has on brain functioning. Furthermore, animal models might help in studying the timing and mechanisms of the repeat amplification. These mice have been instrumental in research to the understanding of the pathogenesis of FXS. Many chapters in this book are describing experiments using these animal models. Also models for FXS has been generated in flies, zebra fish, and rats. All of these have there own advantages and disadvantages. Rats (an animal widely used by the pharmaceutical industry) might be useful in testing drugs while flies and zebra fish can be used for screening drugs. The different contributions cover the progress in research in the field of FXS very well. They are subdivided into three different sections: - 1. Clinics, diagnosis, epidemiology, molecular mechanisms, and models - 2. Pathways involved - 3. Clinical trials Although we have learned a lot in the last 25 years, it will be clear to the readers that there is still more exciting work to do. In my view we still have to gain more insight in the pathological and physiological processes both at the level of (lack of) protein and the mechanism of repeat instability. So far progress in treatment of patients has been limited, not to say disappointing despite the fact that preclinical studies in mice were successful. We need to understand better differences within patient groups and we need better instruments to study the effect of treatment. I hope this book will encourage readers and researchers to extend our knowledge further with regard to FXS. Rotterdam, January 2016 Ben A. Oostra ## Preface Why a book? This is the first question you will ask upon seeing the nearly 500 pages of this book on Fragile X Syndrome. Isn't a book something very much of the past, something we used to be proud of since the invention of typography many centuries ago, an art now replaced by cybergraphy, providing us continuously with information free of charge wherever we are, even when watching a movie or relaxing on a sunny beach. Those who are satisfied with the information provided this way, please stop reading here. We are very much aware that even a simple search with the phrase "Fragile X Syndrome" on even the most amateurish of all search engines on any computer, laptop, or smartphone will result in thousands of hits within milliseconds, each of which will guide you through blogs, fora, papers, essays, etc. on this, or, in fact on any other topic. We felt however, that without the proper background on this complicated neurodevelopmental disorder, the "cyber only" reader would be congested with information within seconds and it will be impossible for him or her to filter out the relevant and reliable information. A classic example of too much of a good thing, that is, somewhat equivalent to going to a university without ever having seen inside of a secondary school. By providing the information on this genetic disorder in a highly structured and relevant format, our book is meant to serve as an anchor point for those in search of information. Why on the Fragile X Syndrome? The simple fact that we choose this topic because both of us have been working on it for so long is not the answer, not at all. The reason why we selected this topic is that the disorder keeps surprising us time after time after time by creating novel insights, by unraveling cellular mechanisms, and by its involvement in yet another molecular pathway. In the early years, immediately following the discovery of the gene, at that time novel mutational mechanism raised much attention. The many functions of the FMR1 gene are another still not completely resolved mystery. Rather than a single function, the gene appears to play a role in a multitude of cellular processes and molecular pathways in the cell. Most interesting, several of these pathways are amendable to treatment with drugs that have been for many years on the shelf of various pharmaceutical companies that are eager to collaborate with the academic world to improve the condition of the patient. As such the Fragile X Syndrome has become the lead example of a monogenetic disorder that paved the way for the targeted intervention studies in many related neurodevelopmental disorders. This book provides the state of the art in Fragile X Syndrome research, with an emphasis on the pathways amendable to treatment. It includes with an overview of the current clinical trials and reflects on those (What have we learned?). Of course we have not forgotten the input from the patients and their parents. The book, without exception written by long-term experts in the field, will appeal to a broad readership and is meant as a point of reflection for the "Nestors" in the field and at the same time as a point of inspiration for novel investigators that are eager to enter the field. For medical doctors, **xiv** PREFACE patients, caregivers, and relatives it is meant to provide a realistic overview of what scientific research has achieved and what can be expected in the near future. No book should ever be written without acknowledgments. We thank all contributors for their commitment and their eagerness to transform their expertise in written language. Only in retrospect this is easy. A specific thanks to our reviewers, many of whom felt they could have contributed to the contents of the book as well (and rightly so!), who dedicated their time to improve the chapters for little more than this anonymous reward. Their efforts are immensely appreciated. And of course we thank our collaborators, students, and colleagues, for continuous inspiration over a long, long period of time. Finally we thank each other for our almost perfectly complementary expertises, professional networks, and characters. Together we made it work and it was fun to do so! Rob and Frank ### Contents List of Contributors ix Foreword xi Preface xiii #### T # CLINICS, DIAGNOSIS, EPIDEMIOLOGY, MOLECULAR MECHANISMS, AND MODELS The Clinical Phenotype of the Fragile X Syndrome and Related Disorders GIOVANNI NERI Introduction 3 The Fragile X Syndrome 3 Fragile X Tremor Ataxia Syndrome 11 The Fragile X Premature Ovarian Insufficiency 13 References 13 2. Fragile X Syndrome Genetics DAVID L. NELSON, MICHAEL R. SANTORO, STEPHEN T. WARREN Setting the Stage 19 Genetic Oddities 20 Positional Cloning of FRAXA and FMR1 22 FMR1 Structure and Function 25 FMRP and mRNA Metabolism 27 Resolving the Sherman Paradox 28 Premutation Disorders 30 Origins of FXS 31 Conclusions and Perspectives 31 References 34 Molecular Diagnostics and Genetic Counseling in Fragile X Syndrome and FMR1-Associated Disorders FLORA TASSONE, MONTSERRAT MILÀ Fragile X Syndrome 41 The Diagnosis of Fragile X Syndrome 43 Genetic Counseling in FMR1-Associated Disorders 46 References 51 4. Epidemiology of Fragile X Syndrome STEPHANIE L. SHERMAN, JESSICA E. HUNTER Introduction 57 Prevalence of FXS 59 Prevalence of FXS Among Subpopulations 61 Factors Related to Variation in Clinical Presentation Affect the Ability to Estimate Prevalence 67 Deletions and Point Mutations Leading to FXS 68 Conclusions 70 References 70 Mechanisms of Repeat Instability in Fragile X Syndrome KAREN USDIN, INBAL GAZY, XIAO-NAN ZHAO Introduction 77 Potential Mechanisms for Repeat Expansion 81 Potential Mechanisms for Contraction and Error-Free Repair 89 Do Chromosome Fragility and Repeat Expansion Share a Common Mechanism? 90 Concluding Remarks and Future Directions 91 References 93 ## 6. Modeling Fragile X Syndrome Using Human Pluripotent Stem Cells DAN VERSHKOV, TAMIR BEN-HUR, NISSIM BENVENISTY Human-Based Models for FXS 105 Modeling FXS in Human Pluripotent Stem Cells 106 Human ESCs as a Developmental Model for FXS 108 iPSCs in Modeling Fragile X Syndrome 109 Neural Differentiation of FXS-PSCs 111 PSC Modeling of CGG Repeat Instability 113 The use of FXS-PSCs for Targeted Drug Discovery 115 Conclusions 116 References 117 #### 7. Animal Models of Fragile X Syndrome R. FRANK KOOY, PENG JIN, HAN BAO, SALLY TILL, PETER KIND, ROB WILLEMSEN Introduction 123 Rodent Models of Fragile X Syndrome 124 Mouse Models of Fragile X Syndrome 125 The Phenotypic Spectrum of the Knockout Mouse 130 Rat Models of Fragile X Syndrome 134 Zebra Fish Models of Fragile X Syndrome 136 Concluding Remarks 141 References 141 #### H #### PATHWAYS INVOLVED 8. RNA and Protein Targets of FMRP JOSHUA SUHL, CHARLES HOEFFER Introduction 151 Approaches to Defining the RNAs/Proteins Associated with FMRP 152 FMRP-Binding Determinants 160 References 167 ## 9. The mGluR Theory of Fragile X: From Mice to Men LAURA J. STOPPEL, EMILY K. OSTERWEIL, MARK F. BEAR Introduction 173 FMRP Negatively Regulates Translation 175 Animal Models of FXS 176 Dysregulation of Synaptic Protein Synthesis in the Fmr1 KO Mouse 177 The mGluR Theory of FXS 178 Correcting FXS: Targeting mGlu₅ 179 Correcting FXS: Targeting Translation Control 179 Correcting FXS: Other Targets 187 From Mice to Men: Clinical Trials for FXS 189 Failure in the Clinic and What we can Learn 190 New Directions 191 Concluding Remarks 194 References 194 #### 10. The GABAergic System Contributions to the Fragile X Syndrome Phenotype MOLLY M. HUNTSMAN, R. FRANK KOOY Introduction 205 Inhibitory Interneuron Dysfunction in FXS 206 Synaptic Components at GABAergic Synapses are Dysregulated in FXS 207 Targeting Deficiencies of the GABAergic System in FXS as Viable Treatment Options 210 Preventing Depolarizing GABAergic Potentials in Developing Circuits 211 Conclusions 212 References 212 #### Intracellular Signaling Networks in Fragile X Syndrome: Approaches to Drug Discovery and Therapeutics CHRISTINA GROSS, ADITI BHATTACHARYA Introduction 217 Dysregulated PI3K Signaling in FXS 218 Dysregulated ERK1/2 Signaling in FXS 221 Targeting the Signaling hub Ras to Correct Altered Signaling in FXS 223 TSC-mTORC1-S6K1-4EBP Nexus: a Major mRNA Translation Control Node in FXS 226 TSC 1-2 Complex is a Vital, but Understudied Signaling Node for FXS 226 mTOR is a Well-Studied Candidate in FXS, but may not be Suited for Direct Therapeutic Intervention 227 S6K1: A Signal Integrator and Translational Regulator with Therapeutic Potential in FXS 229 CONTENTS vii Modulation eIF4E via Mnk1 Offers an Alternative to Managing FXS Phenotypes 231 Challenges and Future Outlook 232 References 233 ## 12. The Endocannabinoid System in Fragile X Syndrome HENRY G.S. MARTIN, DANIELA NEUHOFER, OLIVIER J.J. MANZONI Introduction 241 Molecular Alterations in FXS 243 Inhibitory Neurotransmission 244 Excitatory Neurotransmission 249 Endocannabinoid System Interventions 251 Conclusions/Perspectives 253 References 254 #### 13. Glycogen Synthase Kinase-3: Abnormalities and Therapeutic Potential in Fragile X Syndrome RICHARD S. JOPE Introduction 261 Fragile X Syndrome: Etiology and Animal Models 261 Glycogen Synthase Kinase-3 262 Morphological and Biochemical Effects of GSK3 Inhibition in Fmr1 Knockout Mice 263 Behavioral Abnormalities in Fmr1 Knockout Mice Improved by GSK3 Inhibitor Treatments 264 Cognitive Impairments in Fmr1 Knockout Mice Rescued by Administration of GSK3 Inhibitors 267 Electrophysiological Abnormalities in Fmr1 Knockout Mice Improved by GSK3 Inhibitors 269 Clinical Trials 270 Summary 270 References 271 ## 14. Defects in Rho GTPase Signaling to the Spine Actin Cytoskeleton in FMR1 Knockout Mice JULIE C. LAUTERBORN, CHRISTINE M. GALL Introduction 277 Changes in the Spine Actin Cytoskeleton Support Synaptic Plasticity 280 FMR1 KO Defects in Rho GPTase Signaling Pathway Proteins 283 Conclusions and Future Directions 291 References 293 ## 15. Matrix Metalloproteinases in Fragile X Syndrome DOUGLAS W. ETHELL, HARPREET SIDHU Introduction 301 FMR1-Deficiency and Dendritic Spine Morphology 303 Extracellular Matrix 306 Metalloproteinases 307 MMP-9 in FXS 310 Conclusions 313 Abbreviations 314 References 314 ## 16. Ion Channel Dysfunction and FXS ANDREAS FRICK, MELANIE GINGER, LYNDA EL-HASSAR, LEONARD K. KACZMAREK Introduction 323 Voltage-Dependent Potassium Channels 324 Nonselective Cation Channels 331 Calcium Channels 332 Conclusions 334 References 334 ## 17. Reactivation of the FMR1 Gene ELISABETTA TABOLACCI, PIETRO CHIURAZZI Introduction 341 Epigenetic Status of Premutated Alleles 343 Epigenetic Silencing of FMR1 Full Mutation 344 Rare Individuals with Unmethylated Full Mutation 349 Treatment Options for FXS 350 Reactivation of the FMR1 Gene 351 Future Perspectives 354 References 355 #### III #### **CLINICAL TRIALS** ## 18. Drug Discovery for Targeted Pharmacotherapy of Fragile X Syndrome SEBASTIAN S. SCHARF, FABRIZIO GASPARINI, WILL SPOOREN, LOTHAR LINDEMANN Introduction 363 Molecular Pathophysiology of Fragile X Syndrome 364 Fragile X Disease Models 366 Targeted Interventions that have been Tested Preclinically in FXS 372 Comparing Treatment Effects Observed in Fmr1 Knockout Mice and FXS Patients: The Example of mGlu5 NAMs 380 Future Directions for Drug Discovery in FXS 381 References 389 #### 19. Overview of Targeted Double-Blind, Placebo-Controlled Clinical Trials in Fragile X Syndrome ANDREW LIGSAY, RANDI HAGERMAN, ELIZABETH BERRY-KRAVIS Introduction 401 Clinical Trials in Young Children with FXS 402 Clinical Trials of Agents Targeting Glutamate Receptors in FXS 406 Clinical Trials of Agents Targeting GABA Mechanisms in FXS 409 Clinical Trials of Agents Targeting Cellular Signaling in FXS 412 Conclusions 414 References 415 ## 20. Reflections on Clinical Trials in Fragile X Syndrome AIA E. JØNCH, SÉBASTIEN JACQUEMONT Introduction 419 Symptomatic Treatments 420 A Unique Targeted Drug Development Effort 424 Conclusions and Future Prospects in Clinical Trials 435 References 437 #### 21. Outcome Measures in Clinical Trials for Fragile X Syndrome: The Search for Sensitive Neurocognitive Assays JACALYN GUY, GAIA SCERIF Rethinking Fragile X Syndrome with a View to Measuring Positive Treatment Outcomes: An Overview 444 Beyond Brain-Behavior Links Through Beyond Brain-Behavior Links Through Developmental Findings: Implications for Treatment 445 Understanding Cognitive Underpinnings of Target Symptoms: Insights from Autism 447 Understanding Cognitive and Neural Underpinnings of Symptoms: Implications for Measure Selection 448 Concluding Remarks on Current and Future Measure Selection Choices 451 References 452 ## 22. Fragile X Research From a Parental Perspective JÖRG RICHSTEIN, JEFFREY COHEN, BECKY HARDIMAN Introduction 457 Survey Methodology 458 Results/Data Discussion 460 Conclusions 464 Looking to the Future: Communication is Key 467 Some closing thoughts 469 Index 471 ## CLINICS, DIAGNOSIS, EPIDEMIOLOGY, MOLECULAR MECHANISMS, AND MODELS - 1 The Clinical Phenotype of the Fragile X Syndrome and Related Disorders 3 - 2 Fragile X Syndrome Genetics 19 - 3 Molecular Diagnostics and Genetic Counseling in Fragile X Syndrome and FMR1-Associated Disorders 41 - 4 Epidemiology of Fragile X Syndrome 57 - Mechanisms of Repeat Instability in FragileX Syndrome 77 - 6 Modeling Fragile X Syndrome Using Human Pluripotent Stem Cells 103 - 7 Animal Models of Fragile X Syndrome 123 ## CLINICS, DIAGNOSIS, EPIDEMIOLOGY, MOLECULAR MECHANISMS, AND MODELS - 1 The Clinical Phenotype of the Fragile X Syndrome and Related Disorders 3 - 2 Fragile X Syndrome Genetics 19 - 3 Molecular Diagnostics and Genetic Counseling in Fragile X Syndrome and FMR1-Associated Disorders 41 - 4 Epidemiology of Fragile X Syndrome 57 - 5 Mechanisms of Repeat Instability in Fragile X Syndrome 77 - 6 Modeling Fragile X Syndrome Using Human Pluripotent Stem Cells 103 - 7 Animal Models of Fragile X Syndrome 123