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Preface

Spaces of constant curvature, i.e. Euclidean space, the sphere, and Loba-
chevskij space, occupy a special place in geometry. They are most accessible to
our geometric intuition, making it possible to develop elementary geometry
in a way very similar to that used to create the geometry we learned at
school. However, since its basic notions can be interpreted in different ways,
this geometry can be applied to objects other than the conventional physical
space, the original source of our geometric intuition.

Euclidean geometry has for a long time been deeply rooted in the human
mind. The same is true of spherical geometry, since a sphere can naturally be
embedded into a Euclidean space. Lobachevskij geometry, which in the first
fifty years after its discovery had been regarded only as a logically feasible
by-product appearing in the investigation of the foundations of geometry, has
even now, despite the fact that it has found its use in numerous applications,
preserved a kind of exotic and even romantic element. This may probably be
explained by the permanent cultural and historical impact which the proof of
the independence of the Fifth Postulate had on human thought.

Nowadays modern research trends call for much more businesslike use of
Lobachevskij geometry. The traditional way of introducing Lobachevskij ge-
ometry, based on a kind of Euclid-Hilbert axiomatics, is ill suited for this
purpose because it does not enable one to introduce the necessary analytical
tools from the very beginning. On the other hand, introducing Lobachevskij
geometry starting with some specific model also leads to inconveniences since
different problems require different models. The most reasonable approach
should, in our view, start with an axiomatic definition, but it should be based
on a well-advanced system of notions and make it possible either to refer to
any model or do without any model at all.

Their name itself provides the description of the property by which spaces
of constant curvature are singled out among Riemannian manifolds. However,
another characteristic property is more important and natural for them — the
property of maximum mobility. This is the property on which our exposition
is based.

The reader should realize that our use of the term “space of constant cur-
vature” does not quite coincide with the conventional one. Usually one under-
stands it as describing any Riemannian manifold of constant curvature. Under
our definition (see Chap. 1, Sect. 1) any space of constant curvature turns out
to be one of the three spaces listed at the beginning of the Preface.

Although Euclidean space is, of course, included in our exposition as a
special case, we have no intention of introducing the reader to Euclidean
geometry. On the contrary, we make free use of its basic facts and theorems.
We also assume that the reader is familiar with the basics of linear algeb-a
and affine geometry, the notion of a smooth manifold and Lie group, and the
elements of Riemannian geometry.
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For the history of non-Euclidean geometry and the development of its ideas
the reader is referred to relevant chapters in the books of Klein [1928], Kagan
[1949, 1956), Coxeter [1957], and Efimov [1978].
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Chapter 1
Basic Structures

§ 1. Definition of Spaces of Constant Curvature

This chapter provides the definition of spaces of constant curvature and of
their basic structures, and describes their place among homogeneous spaces
on the one hand and Riemannian manifolds on the other. If the reader’s main
aim is just to study Lobachevskij geometry, no great damage will be done if
he skips Theorems 1.2 and 1.3 and the proof of Theorem 2.1.

1.1. Lie Groups of Transformations. We assume that the reader is
familiar with the notions of a (real) smooth manifold and of a (real) Lie
group. The word “smooth” (manifold, function, map etc.) always means that
the corresponding structure is C°°. All smooth manifolds are assumed to have
a countable base of open subsets. By T;;(X) we denote the tangent space to a
manifold X at a point x, and by d,g¢ the differential of the map g at a point
z. If no indication of the point is necessary the subscript is omitted.

‘We now recall some basic definitions of Lie group theory. (For more details
see, e.g. Vinberg and Onishchik [1988).)

A group G of transformations! of a smooth manifold X endowed with a Lie
group structure is said to be a Lie group of transformations of the manifold
X if the map

GxX—-X, (9, %) — gz,

is smooth, which means that the (local) coordinates of the point gz are smooth
functions of the coordinates of the element g and the point z. Then the sta-
bilizer

G:.={g€eG:gr=r}

of any point z € X is a (closed) Lie subgroup of the group G. Its linear
representation g — d;g in the space T, (X) is called the isotropy representation
and the linear group d,G, is called the isotropy group at the point z.

The stabilizers of equivalent points ¢ and y = gx (g € G) are conjugate
in G, Le.

Gy, = gGzg~".

The corresponding isotropy groups are related in the following way:

d;Gy = (dz9)(d2G2) (dxg)“l-
In other words, if tangent spaces T;(X) and T, (Y) are identified by the iso-
morphism d,.g, then the group d,G, coincides with the group d,G,,.

! By a group of transformations we understand an effective group of transformations,
i.e. we assume that different transformations correspond to different elements of
the group.



I. Geometry of Spaces of Constant Curvature 9

If G is a transitive Lie group of transformations of a manifold X, then for
each point z € X the map

G/Gz:— X, gGz— gz

is & diffeomorphism commuting with the action of the group G. (The group
G acts on the manifold G/G; of left cosets by left shifts.) In this case the
manifold X together with the action of G on it can be reconstructed from the
pair (G, G3).

Definition 1.1. A smooth manifold X together with a given transitive
Lie group G of its transformations is said to be a homogeneous space.

We denote a homogeneous space by (X, G), or simply X.
A homogeneous space (X, G) is said to be connected or simply-connected?
if the manifold X has this property.

1.2. Group of Motions of a Riemannian Manifold. A Riemannian
metric is said to be defined on a smooth manifold X if a Euclidean metric is
defined in each tangent space T;(X), and if the coeflicients of this metric are
smooth functions in the coordinates of z. A diffeomorphism g of a Riemannian
manifold X is called a motion (or an isometry) if for each point z € X the
linear map

deg : To(X) — Tye (X)

is an isometry. The set of all motions is evidently a group.
Each motion g takes a geodesic into a geodesic, and therefore commutes
with the exponential map, i.e.

g(exp§) = exp dg(¢)

for all £ € T(X). Hence each motion g of a connected manifold X is uniquely
defined by the image gz of some point z € X and the differential d.g at that
point. This enables us to introduce coordinates into the group of motions,
turning it into a Lie group. To be more precise, the following theorem holds.

Theorem 1.2 (Kobayashi and Nomizu [1981]). The group of motions of a
Riemannian manifold X is uniquely endowed with a differentiable structure,
which turns it into ¢ Lie group of transformations of the manifold X.

If the group of motions of a Riemannian manifold X is transitive, then X
is complete. Indeed, in this case there exists € > 0, which does not depend
on z, such that for any point z € X and for any direction at that point there
exists a geodesic segment of length ¢ issuing from z in that direction. This
implies that each geodesic can be continued indefinitely in any direction.

A Riemannian manifold X is said to have constant curvature c if at each
point its sectional curvature along any plane section equals c.

2 We assume that any simply-connected space is, by definition, connected.
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Simply-connected complete Riemannian manifolds of constant curvature
admit a convenient characterization in terms of the group of motions.

Theorem 1.3 (Wolf [1972]). A simply-connected complete Riemannian
manifold is of constant curvature if and only if for any pair of points z,y € X
and for any isometry ¢ : Tp(X) — T,(X) there exists a (unique) motion g
such that gz =y and dog = .

The first part of the statement follows immediately from the fact that
motions preserve curvature and that any given two-dimensional subspace of
the space T;(X) can, by an appropriate isometry, be taken into any given
two-dimensional subspace of the space T}, (X). For the proof of the converse
statement see Chap. 8, Sect. 1.3.

1.3. Invariant Riemannian Metrics on Homogeneous Spaces. Let
(X,G) be a homogeneous space. A Riemannian metric on X is said to be
invariant (with respect to G) if all transformations in G are motions with
respect to that metric. An invariant Riemannian metric can be reconstructed
from the Euclidean metric it defines on any tangent space T,(X). This Eu-
clidean metric is invariant under the isotropy group d;G;. Conversely, if a
Euclidean metric is defined in the space T.(X) and is invariant under the
isotropy group, then it can be moved around by the action of the group G
thus yielding an invariant Riemannian metric on X. Thus, an invariant Rie-
mannian metric on X exists if and only if there is a Euclidean metric in the
tangent space invariant under the isotropy group.

We now consider the question of when such a metric is unique.

A linear group H acting in a vector space V is said to be irreducible if
there is no non-trivial subspace U C V invariant under H.

Lemma 1.4. Let H be a linear group acting in a real vector space V. If
H is irreducible, then up to a (positive) scalar multiple there is at most one
Euclidean metric in the space V invariant under H.

Proof. Consider any invariant Euclidean metric (if such a metric exists)
turning V into a Euclidean space. Then each invariant Euclidean metric ¢
on V is of the form g(z) = (Az,x), where A is a positive definite symmetric
operator commuting with all operators in H. Let ¢ be any eigenvalue of A. The
corresponding eigenspace is invariant under H, and consequently coincides
with V. This implies that A = cE, i.e. ¢(z) = c(z, ). 0

The Lemma implies that if the isotropy group of a homogeneous space is
irreducible, then there exists, up to a (positive) scalar multiple, at most one
invariant Riemannian metric.

If 2. homogeneous space X is connected and admits an invariant Riemannian
metric, then the isotropy representation is faithful at each point z € X, since
each element of the stabilizer of z, being a motion, is uniquely defined by its
differential at that point.



