1

EI‘]J?EH’J%?'E Jr

Themeji/f

ELISA BANI

HlLA T b B AR A

China Machine Press

SIOBHAN CL.

ARKE
ASSAD

» OBJECT TEC Hm

i
i
;
g
L

BOOCH
JACOBSON
AU

HBAUGH

(BR=

(RMHR) =
\ SPECT-ORIENTED
ANALYSIS AND DESIGN
THE THEME APPROACH

S
=

iobhan Clarke 2
lisa Baniassad

- NN

AR AENAH SR

Theme}ig

AT R R Rk

Elisa Baniassad

¢ (Eﬁ'{!i'_) Siobhan Clarke

English reprint edition copyright © 2006 by Pearson Education Asia Limited and China
Machine Press.

Original English language title: Aspect-Oriented Analysis and Design: The Theme
Approach (ISBN 0-321-24674-8) by Siobhan Clarke and Elisa Baniassad, Copyright © 200S.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing
as Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan,
Hong Kong SAR and Macau SAR).

A 15 S CRCEN R i Pearson Education Asia Ltd £EAUHLAE Tk HiRiE R R, F42
M B ire, RELMEAAREHSDEFBRE, ™

RFHEARLMERSN (ROEhEEE. B EIITE AP EEEHRX)
R,

A A5 E NG H Pearson Education (BiA# & HARER) BOLHRE, THEETR
B,

IEEUERE, BALER.
AHEEME JSbRTREEMBEAR

EBEWNZi2S. BF: 01-2005-5836
EBERKE (CIP) ¥R

1 75 E s #r 51 Themedy ik (E3Ch) / (F/R%E) his (Clarke, S.)
FE. —Abnt: YUkt RRE, 2006.1

(B HMERRTE)

4. Aspect-Oriented Analysis and Design: The Theme Approach

ISBN 7-111-17975-7

o 0. I R RIE SRR V. TP312
IR A B A ECIPRAR B (2005) #5141698 2

FUB Tl AR HE Gt kX B A 225 MRECHFS 100037)
g RigE

LB AF R EPRIA FRA FIENR - JraeH 5L RITH R 17
20064F1 H 1R 17K ENRY

718mm x 1020mm 1/16 - 24.75E[13k

EN%c: 0001-3 000/}

Efr: 49.007C

JUaAS, mAFEIE. R, ki, A THiE#R
AR EHeE. (010) 68326294

PETRE Y

S

2% B AR

:
i

HhRE BINE

KEE MR, FORif KRR MIE S RAERE, FE5ERERRH
LR A GURIE T 2R WERXFNESL, EXEAERGERARRNNT
LERALAREH, MERE, E/mlLerERs, RN LR 5T RO RT
24, HEILERP Y £ # LR SRR BT, BT R L H
Frep e, TUEER] TRRARITERE, BBE THAMELE, BREFEEANE, XAF¥
HME, HMEHAESEE AR TREGE .

VLA, EAKERLAHMNEST, REMTENS R RRE, HE L AFHH
kHZAY., XM TENHFRMBEREAELINS, tEkKE,: WieLEHIRIRE
BEHESRK LEHRERE, FREFEBERERHAZE. MEARRPHBART, £
%k EEFELTENREEBEML T ERRENZABHNAEFLEBSBEE ZL.
Rk, SIdE—HESMETE BN AR E BT TR R RERRA#ENTER,
SR EN, BIXEENES - RAEHLHZE,

PLAE Tl R e B E SO BARA TR EEINE “HRBEAHFIRS. H19984
FFih, EEA R TREE SR Tk, BEEMBEM L, 22 LENTRE D,
#/15Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan KaufmannZ {3 £ H
MAFRBLTREMAERXRERE, NEMRAANEE MM P BEH Tanenbaum,
Stroustrup, Kernighan, Jim Gray% KWfi & K i—H#E 8IS, L “UHEHFEAS" 24
SERERR, HiEEe] BRREE. KEALQEMHEE, WEFRTXEMNBHSA
Ftg A

“HENEZA” RHER TESE TEANNFERRORY, BANERA RS
THENESES, SASEERMT TEENERMITIE;: mRBAESBHEHERE
HAEREPEAEE, ANSEERARBOFIERERF, €4, “HRIBEAS" 22
HikR TR E A SRRl XL BEAIRE PR T RO, HHIFLEBRALERH
MBS B, A -PWT BERRITT T BT,

B EZRRIEMNS T EMEMSCENERHENL, HF R BN EIBM ATk
R RERE A= B, Ak, REATEMKSERMMOE, £ “REHF
FIEE R THR ARG ENEM . B “HELBFEAR" 25, dRENMAI %
b, WEHIFRE “SHBERBE" AR, SI#ELERTHBFH T “Schaum’s
Outlines” ZFIHMK “£ELHEINR/IRI . ATRIEXZENBRIBEME, FBH
HT EHAFRMENRNRES, RBLFABIETHEBER, ks, FERE.
ERHE RS, EEKRY., LBREKRY. ERAFE, WLKFE. dEBERE. BR

iv

ELIKRF, ARGERE, PEARKSE, EEMEBHRKFE, LR6BE K%, il
K%, BRERT KRS, BMKE, Bt TE#k. FEEXERR2MENEPOEE
NEAKENMFAE T ENRN SN FBNELFEAR “TRBFERE, AN
RO E W AR _

X Z 2R BB SR W RSN A S B, A E A BB T E LR AR
L WHIBFEFITER, HPFEEMHEHM. 1 T., Stanford, U.C. Berkeley, C. M.
U ZitRAMKEREA. AXEETEFIR. BBEH. RERL. HEILGRS
B, BRE. RIERE. KETRE, AR, BEE5NE. BEBEESEANAEITEL
Ll ERFIRNZORE, MARESEG—ANHAESRITEZE, AENFH2=1
FEfATE, ANCHLSHRNLEREKRRH. EXSBREBREFNLIEREAESIZT,
EEVHETENRFEFNERTABREMAZ,

BURAITES . 2BAIEM. —KNIES. MHROER, BENEE, XWEEHEK
MOEBETREANRIE, ERNVBEBFRRERERE, MEKRNVELERBIER X —
KREFEEREY . BHOERARBRNVEHRRFSEL ., FLEL TR LT
BB LR LB RS THRE, RIMMBERATENT:

B, F-#R 4 : hzjsj@hzbook.com
BRZAHiE. (010) 68995264

PRk ALRHRERE A ERS
B 4mbD . 100037

ERESERE

2 m

(Bl R EAY)
AL E S
hEF
)7 %
it &34
&g
L EST
£ 8

A
R # %
Foky
G B
£ %
7R
L

X EM
* B3R
A&
B 1h &
& BA
A 4=

For Padraic, with my love and thanks.
—Siobhdn

To Ryan.

—Flisa

Preface

Aspects are a natural evolution of the object-oriented paradigm. They pro-
vide a solution to some difficulties you may have encountered with modu-
larizing your object-oriented code: sometimes functionality just doesn't fit!
You've probably found yourself repeating the same lines of code in lots of
different object-oriented classes because those classes each need that
functionality, and so you can't easily wrap it up in a single place. Good
examples of this kind of code are audit trails, transaction handling, concur-
rency management, and so on. You can now modularize such code with
aspects.

We've seen similar levels of enthusiasm with adopting aspects as there were
with adopting objects—an enthusiasm we share; but starting out with
aspects can be a tricky business. Making the shift to aspect-oriented think-
ing may not be as tough as many people found the shift to object-oriented
thinking, but aspects still might take a little getting used to. The big ques-
tion that springs to mind when trying out aspect-orientation for the first
time is “What are my aspects?” and early adopters have taken various
approaches to try to address it.

We've heard of practitioners trying to apply aspects, but who can't think of
any except those typical, and somewhat trivial ones. The usual examples are
out there to be tried: logging, debugging, coordination. But to make fluent

viii Preface

use of aspects, you also want to be able to use them for concerns that are
specific to your own code.

We've heard of others who have made so many tiny aspects that the class-
es in their core system have no functionality whatsoever! They achieved so

much “separation of concerns” that they could hardly work out the control-
flow of their programs.

Another typical approach to answering the “what are my aspects” question
is to just program vanilla OO code, and then try to spot the functionality
that doesn't quite fit in. That approach has some serious disadvantages. In
particular, it keeps you from being able to reason about aspects until you
start to code. After all, you probably don't wait until you start to write code
before figuring out what your classes should be (even if they’re only a start-
ing point). It’s the same deal with aspects.

Besides being somewhat confusing, early adoption of a paradigm has some
risks. Aspect-orientation is in an exciting phase of growth, but that means
that new languages and new possibilities are coming out frequently, and
that the basic notions of an “aspect” shifts subtly as new philosophies are
revealed. There are different styles of decomposition, even within aspect-
orientation. Which should you choose?

In this book we describe the Theme approach for identifying aspects in
requirements, and modeling them at design. A major strength of the Theme
approach is that it allows you to identify and model aspects regardless of
the aspect-oriented programming language you choose. Our intention in
developing the Theme approach was to enable it to withstand these shifts
by keeping it separate from any particular programming language and by
offering a general-purpose way to identify and describe aspects, regardless
of their definition at the code level.

In addition to talking about the Theme approach and how to apply it, we
also describe the different “worlds” of aspect-orientation, and how the
Theme approach fits into them. You will come away from reading this book
with not just tools for analysis and design, but also with an understanding
of the general field of AO as it stands today. That knowledge will help you
make more informed choices when picking an aspect-oriented implemen-
tation language, and decomposition paradigm.

Preface ix

Audience

For a wide range of situations, AOSD improves the software development
process. This book offers a high-level introduction to the aspect-oriented
approach, and gives instruction on a useful approach for identifying
aspects in requirements, and for designing them in an aspect-oriented way
using UML with a small number of extensions.

We have written this book for practitioners and early adopters of aspect-
orientation. This book will be particularly helpful for those who are trying
to answer the common questions of “What is an aspect?” and “Which
aspects should I be coding?” This book gives you a starting point for think-
ing about aspects, and accounting for them in your requirements and
design.

Even if you've been using aspect-oriented languages for a while, you can
read this book to learn more about identifying aspect functionality in
requirements documentation and how to plan for aspect-design and
implementation. The Theme approach gives a flexible way to identify
aspect-functionality, and a UML-based design modeling language that can
describe aspects independently of programming language. Whatever your
aspect-oriented programming language, the analysis and design approach
and principles described in this book will be helpful and informative.

Of course, this book would also be helpful to academics or students wish-
ing to learn more about the aspect-oriented paradigm.

For all readers, we assume that you are familiar with the object-oriented
paradigm, and are comfortable with the UML notation.

History of Aspect-Oriented Analysis and Design
and The Theme Approach

Analysis and design approaches for software engineering paradigms have
traditionally emerged after people have explored the ideas at the program-
ming level for a while. From there, application of the ideas tends to move
backwards through the software lifecycle. This is true of aspect-oriented

x Preface

analysis and design and so before we look at the origins of Theme, we'll first
take a quick look at what was happening at the code level from the early
1990s.

It's hard to choose where to begin a history of aspect-oriented program-
ming, as a lot of the work we talk about as AOP emerged from the creators’
previous work in the general area. We could also take a broader view in the
larger context of software engineering, as many researchers have been
working on improving software modularization for decades in work that is
not viewed under the “Aspect” umbrella. We'll take the easy way out here,
and simply mention the four main approaches to improved modulariza-
tion that are popularly regarded as being the origins of aspect-oriented
software development.

The most well known approach is the one popularized by the Aspect] lan-
guage, which was first developed by a team from Xerox PARC in 1997, led by
Gregor Kiczales. Previously, the team had worked on metaobject protocols
and reflection, with ideas evolving to the modularisation of “crosscutting”
concerns. Meanwhile, in 1993, a team from IBM TJ. Watson Research
Center, led by William Harrison and Harold Ossher, published work on
“subject-oriented programming”. Subject-oriented programming (and its
later incarnations as multi-dimensional separation of concerns co-led by
Peri Tarr) looks at flexible decomposition and composition of software
modules based on different dimensions of concern. The academic commu-
nity was also hard at work; the next two approaches emerged from univer-
sity research. At the University of Twente in The Netherlands, Mehmet Aksit
and his team had been working on Composition Filters since the early
1990s. With this approach, behavior is modularized in “filters” that can be
used to capture and enhance the execution of object behavior. Karl
Lieberherr at Northeastern University in the US defined the Demeter
Method in the mid 1990s that provides abstractions of the class structure
and navigation to support better separation of this knowledge from an
operation’s behavior. Crista Lopes worked with both Karl Liberherr and
Gregor Kiczales in developing D-Java, and the first official set of “Aspect
languages” in 1997. Fast-forward to 2004 and aspect-oriented program-
ming languages are coming out of the woodwork! Notably, though, each of
the new ones is rooted in principles that originated from one or more of the
original four.

Preface xi

Back to analysis and design. In those early years of aspect-oriented pro-
gramming, there was little to no work being published on supporting
aspect-like principles at earlier stages in the development lifecycle. The
Theme approach to aspect-oriented design was the first approach to incor-
porate aspects into the UML, with Siobhén giving some early ideas their
first “outing” at an OOPSLA workshop in 1997. Its further formulation was
worked on in collaboration with IBM Research, in particular with Peri Tatr,
Harold Ossher and William Harrison, and also with Robert Walker from (at
the time) the University of British Columbia. The design model benefited
considerably from subject-oriented programming principles to the extent
that it was labeled “subject-oriented design” for a few years. However, as
you'll see reading this book, we see the Theme approach as encompassing
different aspect schools of thought, and so Siobhén re-labeled the work on
“subject-oriented design” to “Theme/UML” in 2001.

Identifying and visualizing concerns in documentation was initially
explored by Elisa with Gail Murphy of University of British Columbia, and
Christa Schwanninger of Siemens AG. That work motivated Theme/Doc’s
emergence in 2003 as the aspect-oriented analysis part of the Theme
approach. Theme/Doc is intended as a complement to your existing analy-
sis process, and is the missing link between having a set of requirements,
and knowing what aspects should be designed using Theme/UML.

In forming the Theme approach, we kept in mind the real goals of the pro-
grammer: to understand the problem space (the requirements), and design
appropriately. Our goal was to create an approach that allows the develop-
er to map requirements to design to code. Theme/Doc and Theme/UML
provide this mechanism. Theme/Doc helps you find the aspects in your
requirements. Theme/UML helps you design them. Together, they form the
Theme approach.

How to Read This Book

Of course, the most straightforward way to read this book is from start to
finish. The book follows the basic structure of introduction and motivation
(Chapters 1 and 2), overview and illustration of the approach (Chapters 3-
6), guidance on mapping your designs to some AOP languages in Chapter
7 and examples of its application (Chapters 8 and 9).

xii Preface

However, different parts of the book may be of more interest than others,
depending on your perspective. If you're not sure what an aspect even is,
then Chapters 1, 3 and 4 will be of lots of help. They go over the basic con-
cepts and walk you through finding aspects in a set of requirements.

If you're not convinced aspects are all that great, and are asking the ques-
tion “Why do we need them anyway?” then Chapter 2 will be for you.
Chapters 8 and 9 will also provide you with examples of how aspects can be
applied in different kinds of systems.

If you'd like instruction on capturing aspects in design, then Chapters 5 and
6, which provide details of Theme/UML will walk you through designing
the aspects and the core of your system, and on capturing the specification
of their composition.

Acknowledgments

We very gratefully acknowledge the assistance of many people in the writ-
ing of this book.

Several people contributed to the technical content. Mary Lee worked on
applying the Theme approach in the early stages. Andrew Jackson con-
tributed most of the code samples in the book. Harold Ossher and William
Harrison contributed the CME code. Alan Gray, David McKitterick, Tonya
McMorrow, Karl Quinn, and Conor Ryan were on the development team of
the original Crystal Game on which the book’s example is based. Christa
Schwanninger and Ivana Dusparic advised and contributed the case stud-
ies. We had interesting discussions with Vinny Cahill on developing peer-
to-peer systems.

We also thank those who reviewed copies of the manuscript throughout its
creation: Ron Bodkin, Adrian Colver, Yvonne Coady, Jodo M. Fernandes,
Charles Haley, Paul Holser, Wes Isberg, Gregor Kiczales, Ramnivas Laddad,
Awais Rashid, Ryan van Roode, Michael J. Ward, and Tim Walsh.

Throughout the history of the Theme approach, William Harrison, Stuart
Kent, Michael Kircher, Gail Murphy, John Murphy, Harold Ossher, Christa
Schwanninger, Peri Tarr, and Robert Walker were invaluable influencers
and contributors, for which we are indebted.

Finally, we thank all at Addison-Wesley for making this possible: Kristy
Hart, Brenda Mulligan, Mary O’Brien, Kerry Reardon, and Chris Zahn.

Praise for Aspect-Oriented Analysis and Design

“Developers who are using aspect-oriented programming will appreciate
this contribution to aspect-oriented analysis and design. The authors are
pioneers in this area and have elaborated on past research to produce a
detailed methodology and notation for early aspects.”

—RonN Bopkin, CHIEF TECHNOLOGY OFFICER
New Aspects of Software

“Aspect-orientation is a powerful approach for programming complex sys-
tems. There is a lot to be gained from applying this approach during mod-
eling and designing, as well. The Theme approach in this book represents
an important advancement in AOP adoption by providing practitioners
means to apply aspect-orientation early on.”

—RAMNIVAS LADDAD
Author of Aspect] in Action

“Clarke & Baniassad have written an interesting book that shows how to
use aspects to solve a difficult problem: composing independent program
fragments with overlapping functionality. The included case studies well
illustrate the principles. [recommend the book.”

—CHARLES B. HALEY
Research Fellow, The Open University

“This book presents a very useful set of techniques for helping software
developers to identify the aspects. I am sure that this book will rapidly
become a landmark reference for the software community!”

—JoAo M. FERNANDES
Ph.D., Universidade do Minho

About the Authors

Siobhan Clarke

Siobhdn Clarke is a lecturer at Trinity College, Dublin. She holds BS (1986)
and PhD (2000) degrees from Dublin City University. Siobhdn worked for
IBM Ireland Ltd. in various leading software engineering roles from 1986 to
1997. In 1997, she started her PhD, which was based on extending the mod-
ularization and composition capabilities of UML. This work evolved into
Theme/UML.

Siobhan’s current research focus is on design and programming models for
mobile, context-aware systems. The complexities associated with develop-
ing such systems require advanced software engineering techniques. In
particular, she is investigating and extending aspect-oriented software
development (AOSD) techniques as a means to address these complexities.

Siobhén has served on the program committees of AOSD and UML confer-
ences, and on the organizing committees for AOSD, and MoDELS. She has
co-organized and/or been on the program committee for multiple work-
shops at conferences such as OOPSLA, ECOOP, ICSE, AOSD, and UML in
the area of design and programming models and context-aware comput-
ing. She is on the editorial boards of IEEE Internet Computing and the
Springer Transactions on AOSD.

xvi About the Authors

Elisa Baniassad

Elisa Baniassad is a professor at the Chinese University of Hong Kong. She
received her PhD in 2002 from the University of British Columbia, Canada,
where she worked with Gail Murphy. Elisa then carried out a postdoctoral
fellowship, funded by the National Science and Engineering Council of
Canada and held at Trinity College, Dublin.

Elisa first became intrigued by the AO world during a visit to Xerox PARC in
1997 while involved in some of the earliest empirical work on AOP. She then
began looking at concerns in documentation with her PhD work on Design
Pattern Rationale Graphs: finding concerns in design patterns text and
tracing them through design to code. This work included broader research
into how programmers relate to both their code and to the documentation
upon which they rely. Her main group of victims were gathered by Christa
Schwanninger of Siemens AG.

She then turned to investigating how to bridge from requirements to
aspect-oriented design and started research on Theme/Doc. That work is
currently ongoing, involving empirical studies of programmers and tool
development.

Elisa is involved in several software engineering conferences and has
served on the organizing and/or program committees of OOPSLA, ECOOP,
and AOSD. She has also published papers at these conferences as well as at
ICSE. Elisa is an organizer of the Early Aspects workshop that is typically
held at AOSD and OOPSLA.

