

TRANSIENT ELECTROMAGNETICTHERMAL NONDESTRUCTIVE TESTING

PULSED EDDY CURRENT AND TRANSIENT EDDY CURRENT THERMOGRAPHY

YUNZE HE, BIN GAO, ALI SOPHIAN AND RUIZHEN YANG

TRANSIENT ELECTROMAGNETIC-THERMAL NONDESTRUCTIVE TESTING

PULSED EDDY CURRENT AND TRANSIENT EDDY CURRENT THERMOGRAPHY

YUNZE HE, BIN GAO, ALI SOPHIAN AND RUIZHEN YANG

Transient Electromagnetic-Thermal Nondestructive Testing focuses on two cutting-edge techniques used for Nondestructive Testing (NDT): Pulsed Eddy Current (PEC) and Transient Eddy Current Thermography (TECT).

These two electromagnetic nondestructive (EM NDT) techniques are a means to lower operation and maintenance costs and improve reliability and availability. Their advantages of high speed, high penetration, high sensitivity, wide spectrum, low cost, and easy quantification mean that they play an increasingly important role in: aerospace, renewable energy, marine science, railway, traffic control, civil engineering, and other industrial fields.

Coverage includes

- Theory: including the examination of multiphysics fields for (a) defect evaluation, such as parallel cracks, deep defects beneath the skin and (b) quantification, such as the analysis of thermal wave propagation for phase-based defect quantification
- Methods: including a variety of EM-thermal NDT techniques; time-domain, frequency-domain, and logarithm-domain defect evaluation methods; advanced algorithms, such as principal components analysis (PCA), independent components analysis (ICA), support vector machine (SVM), Blind Source Separation (BSS) and multidimensional tensor decomposition; and image reconstruction and enhancement for improving detectability
- Applications: including an analysis and evaluation of the variation in the properties of
 material including conductivity, permeability, and lift-off; experimental studies for real
 damage, including corrosion in steel, stress in aluminum, impact and delamination in
 carbon fiber reinforced polymer (CFRP) laminates, and RCF cracks in rail tracks

About the Authors

Yunze He is Associate Professor at the College of Electrical and Information Engineering, Hunan University, Changsha, China and at the College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha, China. Bin Gao is Professor at the School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China.

Ali Sophian is Assistant Professor at the Mechatronics Engineering Department, Faculty of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia.

Ruizhen Yang is Associate Professor at the College of Civil Engineering, Changsha University, Changsha, China.

Mr. Malional Defense Industry Press

elsevier.com/books-and-journals

Mechanical Engineering

9 780128 127872

S

Transient Electromagnetic-Thermal Nondestructive Testing

Pulsed Eddy Current and Transient Eddy Current Thermography

Yunze He

Associate Professor, College of Electrical and Information Engineering, Hunan University, Changsha, China College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha, China

Bin Gao

Professor, School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China

Ali Sophian

Assistant Professor, Mechatronics Engineering Department, Faculty of Engineering, International Islamic University Malaysia, Kuala Lumpur, Kuala Lumpur, Malaysia

Ruizhen Yang

Associate Professor, Department of Civil and Architecture Engineering, Changsha University, Changsha, China

The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2017 National Defense Industry Press. Published by Elsevier INC. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-812787-2

For information on all Elsevier publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Jonathan Simpson Acquisition Editor: Glyn Jones

Editorial Project Manager: Naomi Robertson Production Project Manager: Susan Li

Designer: Greg Harris

Transient Electromagnetic-Thermal Nondestructive Testing

Preface

With a growing interest in safety and quality problems in aerospace, renewable energy, marine science, railway, traffic, civil, and other industrial fields, much attention has been devoted to the development of reliability-based or conditionbased maintenance. Condition monitoring (CM), structural health monitoring (SHM), and nondestructive testing (NDT) techniques are the main means to lower the operation and maintenance (O&M) costs and improve reliability and availability. Transient electromagnetic-thermal (EMT)-related CM, SHM, and NDT techniques with advantages of high speed, great penetration, high sensitivity, wide spectrum, low cost, and easy quantification, are widely investigated and have become one of the most promising directions. In recent years, two transient EMT NDT methods-pulsed eddy current (PEC) and transient eddy current thermography (TECT)—have been the research hotspots. For example, in the Elsevier ScienceDirect database, PEC has been on a steady increasing phase in the past 10 years and TECT has been growing rapidly since 2011. Unfortunately, there are only a few books on PEC and TECT published in English, which hinders the spread and development of the technology and related research. In addition, there are more and more bilingual courses in many universities in China and non-English-speaking countries that would benefit from the availability of such a book. Many undergraduate and postgraduate students, as well as scientists and engineers, need a suitable book for their study and research on EMT NDT. Therefore, it is thought that it is the right time to publish a relevant book to meet the demand of readers.

This book is intended to solve several challenges in the physical principles, methods, techniques, and applications of PEC and TECT. *Theoretically*, multiphysics fields including EM induction, eddy current distribution, induction heating, heat conduction, thermal wave propagation, temperature field distribution, and infrared radiation are studied for defect evaluation and quantification; lateral heat conduction is used to detect parallel cracks; longitudinal heat conduction is used to detect deep defects, which are beyond the skin depth; thermal wave propagation is analyzed for phase-based defect quantification, and the physical–mathematical model is investigated to improve detection sensitivity and quantitative analysis. *Methodologically*, various EMT NDT techniques like eddy current pulse thermography (ECPT), eddy current step thermography (ECST), eddy current pulse phase thermography (ECPPT), and pulsed inductive thermal wave radar (PI-TWR) are investigated. Time-domain, frequency-domain, and logarithm-domain defect evaluation methods are described and

analyzed; advanced algorithms, such as principal components analysis (PCA), independent components analysis (ICA), support vector machine (SVM), and multidimensional tensor decomposition are used, and image reconstruction and enhancement is used to improve detectability. In view of *applications*, material property variations including conductivity, permeability, and lift-off are evaluated; experimental studies for real damages including corrosion in steel, stress in aluminum, impact and delamination in carbon fiber reinforced polymer (CFRP) laminates, and RCF cracks in rail are abundant. The book is expected to fill the gap in the literature and provide a relatively comprehensive coverage of PEC and TECT, giving the readers detailed information in related theories, methods, and applications, and benefit readers in both academia and industry.

Chapter 1 introduces the classification of NDT and the classification of transient EMT NDT techniques. The book mainly consists of three parts. Part I is related to PEC. In Chapter 2, a PEC technique where a magnetic sensor is used for sensing the magnetic field is introduced. The usages of signal processing and feature extraction using PCA and wavelets on PEC signals are also presented. In Chapter 3, the influences of material properties on PEC responses are investigated and normalization technique is used to reduce the lift-off effect. Subsequently, two time-domain features representing electrical conductivity and magnetic permeability are extracted. These features are utilized to measure stress in aluminum alloys, to detect defects in honeycomb sandwich structures, to evaluate low-energy impact defects in CFRP, and to characterize atmospheric corrosion on steel. In Chapter 4, the directional PEC probe design providing uniform eddy current is presented. The PEC feature extraction techniques are then studied in both time and frequency domains. PEC frequency response optimization is investigated and used in combination with PCA to eliminate the lift-off effect and interlayer air gap and to classify defects in multilayer structures. The optimized SVM is used to build the classifier model and predict the types of defects.

Part II, which includes Chapters 5–12, is related to TECT and its methods for defect evaluation and characterization. In Chapter 5, basic concepts and classifications for active thermography and eddy current thermography are introduced. Chapter 6 is focused on defect evaluation based on longitudinal and lateral heat conduction of ECPT. Subsurface defects, parallel cracks, and natural oblique cracks in rail are evaluated. Chapter 7 is focused on ECST. Two characteristic features representing separation time were extracted from temperature responses and their monotonic relationships with defect depth were obtained for subsurface quantification. Chapter 8 introduces ECPPT for metal materials through numerical and experimental studies. Two characteristic features, namely blind frequency and minimum phase, were extracted from differential phase spectra. Based on their linear relationships with defect depth, both features can be used to measure defect depth. This chapter also experimentally demonstrates the advantages of phase information to reduce or enlarge the effect of surface emissivity variation. Chapter 9 presents volume heating thermography (VHT) and

inside heating thermography (IHT) for advanced composite materials through these electromagnetic excitations. Several specific VHT/IHT methods have been developed in the forms of both (square) pulse and step analysis in the time domain and phase analysis in the frequency domain. Chapter 10 presents eddy current volume heating thermography (ECVHT) and phase analysis for delamination and impact inspection in CFRP. Chapter 11 presents PI-TWR by introducing cross correlation (CC) matched filtering in ECPT. The results illustrate a significant improvement in the dynamic range, depth resolution, emissivity variation reduction, and detectability of subsurface defects and inside delamination. Chapter 12 proposes through coating imaging (TCI) based on ECPPT. The experimental results illustrate that ECPPT has a greater potential for corrosion detection, sizing, and monitoring than laser profilometry, PEC, and microwave waveguide. Finally, power function is suitable for demonstrating development of early stage (in 6 months) marine atmospheric corrosion like it does for long-term corrosion.

Part III, including Chapters 13-16, is related to the physical-mathematical model-based ECPT for defect evaluation. Chapter 13 constructs a physical-mathematical time-dependent partition model to analyze the whole thermal transient process and considers characteristic times for separating Joule heating and thermal diffusion into four different stages. Chapter 14 proposes an unsupervised method for defect diagnosis with ECPT. The proposed method is fully automated and does not require manual selection of the specific thermal frame images for defect diagnosis by the user. The core of the method is a hybrid of a physics-based inductive thermal mechanism with a signal processing-based pattern extraction algorithm using sparse greedy based principal component analysis (SGPCA). Chapter 15 develops a physics-based multidimensional spatial-transient-stage tensor model to describe the thermooptical flow (TOF) pattern for evaluating contact fatigue damage in a helical gear. It indicates that the proposed methods are effective tools for gear inspection and fatigue evaluation. In Chapter 16, we generate a physics-mathematical modeling and mining route in the spatial-, time-, frequency-, and sparse-pattern domains. This is a significant step toward realizing the deeper insight in ECPT and automatic defect identification. This renders ECPT a promising candidate for the highly efficient and yet flexible nondestructive testing and evaluation (NDT&E) technique.

Dr. Yunze He

Associate Professor, College of Electrical and Information Engineering, Hunan University, Changsha, China; College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha, China

Dr. Bin Gao

Professor, School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China

Dr. Ali Sophian

Assistant Professor, Mechatronics Engineering Department, Faculty of Engineering, International Islamic University Malaysia, Kuala Lumpur, Selangor, Malaysia

Dr. Ruizhen Yang

Associate Professor, Department of Civil and Architecture Engineering, Changsha University, Changsha, China

October 2016

Acknowledgments

The authors work was supported in part by the National Natural Science Foundation of China under grants 61501483, 61171134, F011404, 51377015, 61401071, U1430115, 51408071, and 61527803; in part by the EU FP7 through Health Monitoring of Offshore Wind Farms (www.hemow.eu) under grant 269202; and in part by the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom through Future Reliable Renewable Energy Conversion Systems & Networks: A Collaborative UK—China Project under grant EP/F06151X/1. The authors would also like to thank TWI Ltd., the University of Huddersfield and Newcastle University, United Kingdom for sponsoring Dr. Ali Sophian's PhD research and study. The authors also thank ALSTOM and Prof. Grimberg in the National Institute of Research and Development for Technical Physics, Romania, for providing the experimental CFRP samples.

The authors would like to thank Prof. Gui Yun Tian at the School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China, and the School of Electrical and Electronic Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom, and Dr. W.L. Woo at the School of Electrical and Electronic Engineering, Newcastle University, United Kingdom for their guidance and leadership in their studies and academic careers. Dr. Yunze He would like to thank Prof. Feilu Luo and Prof. Mengchun Pan at the College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha, China for supervision in Mr. Yunze He's MA and PhD programs. Dr. Ali Sophian would like to again thank Dr. John Rudlin of TWI Ltd. and Prof. David Taylor at the University of Huddersfield for their supervision, guidance, and support during his PhD study.

The authors would like to thank their colleagues: Dr. John Wilson, Dr. Liang Cheng, Dr. Hong Zhang, Prof. Xianzhang Zuo, Dr. Libing Bai, Prof. Aijun Yin, Dr. Jianping Peng, Dr. Omar Bouzid, Dr. Abdul Qubaa, Dr. Kongjing Li, Dr. Yunlai Gao, Dr. Yizhe Wang and all at Newcastle University; Dr. Ying Tang, Dr. Yuhua Zhang, Dr. Xiangchao Hu, Dr. Junzhe Gao, Dr. Bo Liu and all at the National University of Defense Technology, who have provided fruitful discussions and advice on pulsed eddy current testing.

The authors are also grateful to the China Scholarship Council for sponsoring Dr. Yunze He to Newcastle University, United Kingdom and Dr. Ruizhen Yang to the University of British Columbia, Canada for joint study. The translation, polishing, and publication of the book are partly supported by Talent

xvi Acknowledgments

Development Special Funding of Changsha City, Hunan Province, China. The authors also thank editors in Elsevier (Dr. Simon Tian, Glyn Jones, Naomi Robertson, and Susan Li) and the National Defense Industry Press, China (Ms. Junyin Xin and Xinjuan Zhang) for their help and advice.

The authors' deepest thanks go to their parents and families, for always supporting and encouraging their research and study.

Yunze He, Bin Gao, Ali Sophian, Ruizhen Yang October 2016

Abbreviations

ACFM Alternating current field measurement

ADC Analog-to-digital converter
AHT Abnormal heating thermography
APG Accelerated proximal gradient

BOB Bottom of bottom
BOT Bottom of top

BPT Burst phase thermography
BSS Blind source separation
CC Cross correlation

CCMF Cross correlation matched filtering
CFRP Carbon fiber reinforced plastic

CM Condition monitoring
DAC Different absolute contrast

DAQ Data acquisition
DF Diff frequency to zero
DFT Discrete Fourier transform

DL Digital level

DWT Discrete wavelength transform

EC Eddy current

ECLT Eddy current lock-in thermography
ECPPT Eddy current pulsed phase thermography
ECPT Eddy current pulsed thermography

ECSPT Eddy current square pulsed phase thermography
ECSPT Eddy current square pulsed thermography

ECST Eddy current step thermography

ECT Eddy current testing or eddy current thermography

ECTRT Eddy current time-resolved thermography ECVHT Eddy current volume heating thermography

EDM Electrical discharge machine

EIS Electrochemical impedance spectroscopy
EMAT Electromagnetic acoustic transducers
EMNDT Electromagnetic nondestructive testing

EMT Electromagnetic-thermal EVD Eigenvalue decomposition

FD Fault diagnosis

FEM Finite element modeling
FFT Fast Fourier transform

FMT Frequency modulated thermography

FN False negative

xviii Abbreviations

FP False positive

GFRP Glass fiber reinforced plastic
GMR Giant magnetoresistive
IC Independent components

ICA Independent component analysis
IHT Inside heating thermography

IR Infrared

LHC Lateral heat conduction
LLT Laser lock-in thermography

LOI Lift-off point of intersection or lift-off invariance

LST Line scanning thermography
LT Lock-in thermography
MAE Magnetoacoustic emission
MBN Magnetic Barkhausen noise
MCMC Markov chain Monte Carlo
MFL Magnetic flux leakage
MP Matching pursuit

MT Modulated thermography
MUT Materials under test
MWT Microwave thermography
NC Normalized contrast
NDE Nondestructive evaluation

NDT Nondestructive testing
NDT&E Nondestructive testing and evaluation

OF Optical flow

NMF

O&M Operations and maintenance OMP Orthogonal matching pursuit

PC Principal components

PCA Principal component analysis

PEC Pulsed eddy current

PI-TWR Pulsed inductive thermal-wave radar

POD Probability of detection PPI Preprocessed image

PPMM Physics-mathematical pattern modeling and mining

Nonnegative matrix factorization

PPT Pulsed phase thermography
PSO Particle swarm optimization

PT Penetration testing or pulsed thermography

PTFE Polytetrafluoroethylene
QEC Quantitative error curve
RBF Radial basis function
RCF Rolling contact fatigue
RFID Radio frequency identification

ROC Receiver operating characteristic
SeHT Selectively heating thermography
SFPM Spatial—frequency pattern mining

SGPCA Sparse greedy based principal components analysis

SHM Structural health monitoring

xix

SHT Surface heating thermography

SNR Signal-to-noise ratio

SPPT Square pulse phase thermography
SPT Square pulse thermography

SSFPM Sparse spatial-frequency pattern mining

SSIM Structural similarity

SSTPM Sparse spatial-time pattern mining

ST Step thermography

STPM Spatial—time pattern mining SVD Singular value decomposition SVM Support vector machine

TBET Tone burst eddy current thermography

TCH Through coating heating TCI Through coating imaging

TC-PCT Truncated correlation photothermal coherence tomography

TECT Transient eddy current thermography

TN True negative
TOB Top of bottom
TOF Thermooptical flow

TOT Top of top
TP True positive

TRT Time-resolved thermography

TSR Thermographic signal reconstruction

TWR Thermal-wave radar

TWRI Thermal-wave radar imaging

UT Ultrasonic Testing

VBSPCA Variational Bayesian sparse principal components analysis

VHLT Volume heating lock-in thermography
VHPPT Volume heating pulse phase thermography
VHPT Volume heating pulse thermography
VHST Volume heating step thermography
VHT Volume heating thermography

WT Wind turbine