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Introduction

Let me begin with a little history. In the 20th century, algebraic geometry has gone
through at least 3 distinct phases. In the period 1900-1930, largely under the
leadership of the 3 Ttalians, Castelnuovo, Enriques and Severi, the subject grew
immensely. In particular, what the late 19th century had done for curves, this
period did for surfaces: a deep and systematic theory of surfaces was created.
Moreover, the links between the “synthetic® or purely “algebro-geometric”
techniques for studying surfaces, and the topological and analytic techniques were
thoroughly explored. However the very diversity of tools available and the richness
of the intuitively appealing geometric picture that was built up, led this school
into short-cutting the fine details of all proofs and ignoring at times the time-
consuming analysis of special cases (e.g., possibly degenerate configurations in a
construction). This is the traditional difficulty of geometry, from High School
Euclidean geometry on up. In the period 1930-1960, under the leadership of
Zariski, Weil, and (towards the end) Grothendieck, an immense program was
launched to introduce systematically the tools of commutative algebra into
algebraic geometry and to find a common language in which to talk, for instance,
of projective varieties over characteristic p fields as well as over the complex
numbers. In fact, the goal, which really goes back to Kronecker, was to create a
“geometry” incorporating at least formally arithmetic as well as projective geo-
metry. Several ways of achieving this were proposed, but after a somewhat chaotic
period in which communication was difficult, it seems fair to say that
Grothendieck’s “schemes™ have become generally accepted as providing the most
satisfactory foundations. In the present period 1960 on, algebraic geometry is
growing rapidly in many directions at once: to a deeper understanding of geo-
metry in dimensions higher than 2, especially their singularities, and the theory of
cycles on them; to uncovering the astonishing connections between the topology
of varieties and their Diophantine properties (their rational points over* finite
fields and number fields); and to the theory of moduli, i.e., the parameters describ-
ing continuous families of varieties.

To acquire a good understanding of modern algebraic geometry, the insights
of each of these periods have to be studied. In particular, it is necessary to know
something both of classical projective geometry, of curves and surfaces in complex
projective space and the “synthetic” tools for manipulating them (such as linear
systems)— this amounts to what people call “geometric intuition”—and to know
something of the analogies between arithmetic and geometry, of “Spec™ and of
“specialization mod p”. Moreover, it is necessary to know both how algebraic
and differential topology and complex analytic tools (such as Hodge theory)
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apply to complex varieties; and to know how commutative algebra can be used.
It is not clear where to start! I have given introductory lectures on algebraic
geometry on at least 5 separate occasions. 1 have taken a different tack each time,
and there are several other approaches I would like to try in the future. This book
grew out of notes that went through several nearly total revisions as a consequence.
In the end, 1 found it impractical to teach classical geometry and schemes at the
same time. Therefore, the present volume, which is the first of several, introduces
only complex projective varicties. But, as a consequence, we can study these
effectively with topological and analytic techniques without extensive preliminary
work on “foundations”. My goal is precisely to convey some of the classical
geometric ideas and to get “off the ground”: in fact, to get to the 27 lines on the
cubic—surely one of the gems hidden in the rag-bag of projective geometry.
The next volume will deal with schemes, including cohomology of coherent
sheaves on them and applications, e.g., to , of curve. The pedagogical difficulty
here is that the definition itself of schemes is hard to swallow; and technically a
massive amount of commutative algebra is needed to get schemes off the ground.
My hope is that a previous acquaintance with complex projective varieties provides
motivation and intuition for schemes.

A detailed list of prerequisites for this book follows this introduction. I hope
it is almost entirely a subset of the list of “standard results” which are generally
common property to all pure mathematicians. My goal has been not only to write
a text for graduate students but to open the subject to specialists in other areas.
Algebraic geometry is a subject that thrives on exchanging ideas and not on
isolation and should be more universally understood! In particular, I have tried
to write a book which you can browse in as well as read linearly. For some general
guide to other literature, let me mention:

i) for the 19001930 phase, Severi [1]*, Semple-Roth [1], and Zariski [1]

ii) for the foundational phase, Grothendieck’s tome [EGA] is standard for
schemes but very hard to read. Another classic is Samuel [1].

iii) among recent books, there is Serre [1], and Safarevié [2]. An introductory
book by R. Hartshorne is expected. An excellent survey of recent research is the
publication AMS [1].

Tenants Harbor,
August, 1975 David Mumford

Note for Second Printing

The author would like to thank Dr. Ronald Infante and Mr. Francis McGuinness for
compiling long lists of misprints, inconsistent notations, and other oversights in the
first printing of this book. Hopefully, their corrections will make this printing easier
to read.

DM

*All references are given in full in the bibliography.



Prerequisites

Algebraic geometry is not a “primary” mathematical subject, i.e., one which one
builds directly from a small and elegant set of axioms or definitions. This makes
it very hard to write an introductory book accessible to the Ist year graduate
student. In general, this book is aimed at 2nd year students or anyone with at
least some basic familiarity with topology, differential and analytic geometry,
and commutative algebra. I want to list here all the concepts and theorems which
will be assumed known at one point or another in this book (except for the results
used only in the more difficult Appendix to Chapter 6).

1. Topology:

a) Besides standard elementary point set topology, the concept of a covering
space is frequently used, e.g., in §§3A, 4B, 7D and 8D.

b) The classification of compact, orientable surfaces by the “number of hand-
les” is used in §7B.

¢) The homology groups (singular homology) come in twice: in §5C, in dealing
with minimal submanifolds in P", and in §7B, in calculating via Euler characteristic
the number of handles of a smooth algebraic curve regarded as a topological
space.

1. Differential Geometry:

Basic advanced calculus knowledge of differential forms and Stoke’s theorem
is used in 2 ways:

a) We assume DeRham’s theorem that the periods of integrals give a perfect
duality between real homology and closed forms mod exact forms in §5C.

b) We deduce from Stoke’s theorem the basic properties of the residue at a
pole of an analytic 1-form on a 1-dimensional complex manifold in §7C.

II1. Analytic Geomerry:

a) In §1B, we recall very quickly the definition of complex manifold, and we
assume known the implicit function theorem for analytic functions. For our
purposes, an arfalytic function is by definition a function given locally by a conver-
gent power series of several complex variables.

b) In §4A, and §4B, we use repeatedly the fundamental local fact of analytic
geometry: the Weierstrass Preparation theorem. Since this may be used to deduce
the implicit function theorem, this includes the assumptions just above.

¢) Once in §4A we use the fact that a complex-valued function f with Re(f)
and Im f differentiable, satisfying the Cauchy-Riemann equations, is analytic.

A good reference for all this material is Gunning-Rossi [1].
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IV. Commutative Algebra:

I wish I were able to cut down these prerequisites considerably, but I have
been drawn into assuming the following:

a) from field theory, the concept of transcendence degree and its connection
with derivations,

b) from general ring theory, the concepts of localizing a ring and a module,
the concept of local ring, graded ring and graded module and the concept of the
completion of a local ring. Integral dependence and integral closure are not used,
except in a minor digression in §6C giving a second proof of one theorem.

¢) Resultants are used in §2C and §4A to give elementary constructive proofs
of several theorems. The basic facts about the resultant are summarized in §2C.

d) The decomposition theorem of ideals in noetherian rings is used in §1A
and ¥4B in its really clementary form: if ¥ = ./, then A =B, n...nP,, B, prime.

e) Several explicit facts about the formal power series ring C[[X,,...,X,]]
are used in Chapter I: that it is a UFD, and the formal implicit function theorem.
This last is a very elementary special case of the formal Weierstrass Preparation
theorem and could really be “left to the reader” as an exercise.

f) Finally, we have assumed in §§1A, 1C and 7B Krull's theorem: that if R is
a noetherian local ring, M < R its maximal ideal, I — R any ideal, then

N u+M)=1

n=1
This can however be easily deduced from the ideal decomposition theorem (see
Z-S,vol.1,p.217). If
R = lim R/M"
defl ¢——

is the completion of R, then the theorem is equivalent to saying:
RAI-R=1.

It would have been nice to avoid using this somewhat less generally known
result: but I don’t know any straightforward way of proving Theorem (1.16)
without it.

My standard reference for commutative algebra is Z —§, (both volumes),
which was, in fact, written to be background for a book on algebraic geometry.
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Chapter 1. Affine Varieties

§1A. Their Definition, Tangent Space, Dimension, Smooth and
Singular Points
The beginning of the whole subject is the following definition:

(1.1) Definition. A4 closed algebraic subset X of C" is the set of zeroes of a finite set
of polynomialisf, ,....[,,i.e.thesetof allx = (x,,...,x,) such that f(x) =0,1 Sism.
We denote X by V(f,,....[,).

U =(f,,....[,) is the ideal in C[X,,...,X,] generated by f,,..../,, then the
set of zeroes of the f; is also the set of zeroes of every g € U, so we will denote X
also by V(). Note that there would be no point in definition (1.1) in using infinite
sets of f's, since the ideal they generate would also be generated by a finite subset
of them according to Hilbert’s basis theorem; hence the set of zeroes of all the
f7s would equal the set of zeroes. of this finite subset. We get immediately the
following properties

a) A, <A, ==VA,)2 VA,
b) V(AU V() = VA, ~A,) = VU, U,)
o V(X U)=V),

aef ael
d) If M, = the maximal ideal (X, — x,,..., X, — x,), then V(M) = {x}.
As a consequence of (b) and (c), the subsets V() of C” satisfy the axioms for the

closed sets of a topology. The topology of C" with these as closed sets will be
called the Zariski topology as opposed to the usual topology.

e) If JU = {feC[X]|f™eU, some m = 1} is the so-called radical of U, then
V (/) = V(A).

Now according to a standard result in the theory of noetherian rings (cf. Z - §,
vol. 1, p. 209) an ideal which equals its own radical is a finite irredundant inter-
section of prime ideals in a unique way:

(*) If A = /AU, then A =P, n...N"P,, where B, 2P, if i# j. This proves:
f) For any ideal %, let /A =P, ~...AP,, then

V) = V(B,)U...u V(B).

(1.2) Definition, A closed algebraic set V(B), where B is a prime ideal, is called
an affine variety.

Examples: a) iffeC[X,,...,X,] is an irreducible polynomial, then the princi-
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pal ideal (f) is prime, hence V(f) is a variety. Such varieties are called hypersur-
Jaces.

b) let g,,...,9,€C[X,] be polynomials. Consider the set
X ={(a,g,(a),...,g,(a))|aeC}.

Then X = V(X, — g(X,),--.. X, — g{X,)). The ideal A =(X, —g,,....X,—9,)
is prime since it is the kernel of the homomorphism

c[X,,....X,]——C[X,]
Xi—X,
X——g(X,)), iz2.

Therefore X is a variety. It is a simple type of rational space curve.

c) Let I,,...,], be independent linear forms in X,,...,X,. Let a,,...,q,€C.
Then X = V(l, —a,,...,I, —a) is a variety, called a linear subspace of C" of
dimension n — k.

A basic idea in the classical theory is the following:

(1.3) Definition. Let k = C be a subfield, and let B be a prime ideal. A k-generic
point xe V(P) is a point such that every polynomial f(X,,...,X,) with coefficients
in k that vanishes at x is in the ideal B, hence vanishes onall of X .

Example: In example (b) above if the coefficients of the g, are in @, the point
(m,g,(m),...,g,(m) is a Q-generic point of this rational curve.

(1.4) Proposition. If C has infinite transcendence degree over k, then every variety
V(P) has a k-generic point.
Proof. Letf,,....f, be generators of B. We may enlarge k if we-wish by adjoin-
ing the coefficients of all the f; without destroying the hypothesis. Let
Bo=PBrk[X,,.....X,]
and let
L = quotient field of k[ X ,,..., X, ]/B,.

Then L is an extension field of k of finite transcendence degree. But any such
field is isomorphic to a subfield of C: i.e., 3 a monomorphism ¢

L

%s@
NS

If X, = image of X, in L and g, = $(X,), I claim g = (a,,...,a,) is a k-generic point.
In fact, f,eB,, | i<k, hence f(X,.....,X,) =0 in L. Therefore f(a,,....a,)=0
in C and a is indeed a point of X. But if fek[X,,....X,] and f¢P, then [¢%B,,
hence f(X,,...,X,)#0 in L. Therefore f(a,,...,a,)= ¢ f(X,,...X,))#0 in C.
QED

For any subset § < C", let I(S) be the ideal of polynomials feC[X,,...,X,]

k
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that vanish at all points of S. Then an immediate corollary of the existence of
generic point is:

(1.5) Hilbert’s Nullstellensatz. If P is a prime ideal, then B is precisely the ideal
of polynomials feC[X ,,...,X,] that vanish identically on V(B), i.e., B = I(V(B)).
More generally, if W is any ideal, then /A = I(V(A)).

Proof. Given any feC[X], let k be a finitely generated field over Q containing
the coefficients of f and let ae V() be a k-generic point. If f¢B, then f(a) #0
hence f does not vanish identically on V(); the 2nd assertion reduces to the
1st by means of (/) on p. 2.

(1.6) Corollary. There is an order-reversing bijection between the set of ideals U
such that A = /U and the closed algebraic subsets X = C" set up by A — V(9)
and X — I(X) = (ideals of functions zero on X). In this bijection, varieties corres-
pond to prime ideals and are precisely the closed algebraic sets which are irreducible
(Le., not the union of two smaller closed algebraic sets).

(1.7) Corollary. If X = V() is a variety, the ring C[X,,...,X,)/® is canonically
isomorphic to the ring of functions X —— C which are restrictions of polynomials.
This ring is called the affine coordinate ring of X and will be denoted R X

The Nullstellensatz usually found in the literature (e.g., Z-S[1], vol. 11, p. 164)
applies to varieties over any algebraically closed groundfield k and is much harder
to prove than (1.5).

Our main goal in this section is to give a first idea of the structure of affine
varieties. Since the simplest type of varieties are the linear ones, we can try to
approximate a general variety by a linear one:

(1.8) Definition. Let X = V() be a variety and let a =(a,,...,a )e X. The Zariski
tangent space to X at a is the linear subspace of C" defined by :

i_:";(a)'(xi—a.')=0, allfe%

We denote this space by Ty , (or T, x).

Note that for each keZ, {ae X |dim T, , > k} is a Zariski closed subset of X.
In fact,iff,,....f, are generators of B: '

dimT, =n— rk(aa—));‘j (a))

1sist
15jsn
hence
{aeX|dim T, , 2 k} = V(B + ideal of (n — k + Dx{(n—k+1)-
minors of (8fi/oX )

More succinctly, we can say that dim Ty . is an upper semicontinuous function
of a in the Zariski topology. (1.8) treats the tangent space externally, ie, as a
subspace of C". But if we regard Ty, as an abstract vector space with origin a,
we can define it intrinsically by derivations on the affine coordinate ring Ry of X.
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i a € X, then a derivation D: Ry——C centered at a means a C-linear map such
that

i) Dt fg) =f(a)-Dig) + gla)- D(f),

ii)y D=0, all aeC.
Clearly a derivation D:Ry— C at a is the same thing as a derivation D':
C[X,,....X,]— C at a such that D'(f) =0, all fe'B.But a D’ is determined

by its values 4, = D(X,) and conversely, given any 4,,...,4, there is a D’ with these
values on the X,. Since

Df= Z ( )DX,, all feC[X],
("X
the derivations D’ which kill B correspond to the 4,,...,4, such that
of
‘21 3X, @4 = all fe®P.

This proves that

(1.9) T, ..( as vector space) - {vector space of denvatlons}

with origin a D:Ry—— Ccentered ata
We can make the definition more local too. First introduce:

(1.10) Definition. If X = V(P) = C" is an affine variety and ac X, then define in
any of 3 ways(!):

0, x = ring of rational funcnonsf( Xyeorn Xo)
feﬂn g(Xl L X )
= localization of Ry with respect to the multiplicative set of g,g(a) # 0
= ring of germs of functions U — C,U a Zariski neighborhood of a in X,
defined by rational functions f /g, where g(a) # 0.

where g(a) # 0, modulo those with

0, x is a local ring, since the set of functions f/g which are zero at a forms a
maximal ideal and every f/g which is not zero at a is invertible, ie., g/fe0_
0, x is called the local ring of ae X .

The point is that every derivation D:R, —— C extends uniquely to the ring
0, by the rule D(f/g) = (g(@)Df — f(2)Dg)/gla)’, hence

T = vector space of derivations
Xa | D:€, x — Ccentered ata

Note that every function fe€ , , defines a linear map df : T, , — C, its differential
by the rule df (D) = D(f). If T, , is considered externally as a subspace of C", then

df is nothing but the linear termZ—){(a) (X;— a;) in the Taylor expansion of f
ata. i

Ry and all the local rings @, , have the same quotient field, which we will
denote C(X) and call the function field of X. An important fact is that the local
rings 0, , determine the affine ring R,. In fact:
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(1.11) Proposition. Taking intersections in C(X), we have.
Ry= ﬂ O, x.

xeX

Proof. The inclusion “c" is clear. Now say fe 0, , for all xe X. Consider the
ideal in C[X,,...,X,] defined by:

A = {geC[X,,....X,]|if§=(g mod P)eR,, F:feRy}.

Since fe®,  we can write f = h, /g,, where h,,g.€C[X ,...,X,].g,(x) # 0. Thus
g.€%, hence x¢ V() for all xe X. Moreover, A > P, so V() = V(P) = X. There-
fore V()= ¢. But then by the Nullstellensatz 1el(V(N))= ﬁl hence 1.
By definition, this means f e Ry. QED

We next use the derivations of C(X) to prove:

(1.12) Proposition. 3 a non-empty Zariski open subset U — X such that:
tr.d..C(X) = dim T, ,, for all ae U.

Proof. 1t is well known that the transcendence degree of any separably gene-
rated field extension K/L is equal to the dimension of the K-vector space of
derivations D:K —— K that kill L. In our case, '

tr.d..C(X) = dimg y,(derivations D: C(X)—- C(X) that kill C)
= dimgy,(derivations D:Ry— €(X) that kill C)

= dimg,,,( derivations D:C[X ,..., X,] — C(X)
that kill C and P

= dimgy,(n-tuples 4y, ..., 4,€C(X) such that
Z%-A, =0in C(X), for all feP
i

= n — rk{the image in C(X) of matrix
(afl/axj)li,tl;l where B = (f1,..., fi)
1Stsn

Therefore it suffices to show

. i/
[rk in C(X) °f<a—,ﬂ),

1

af-
=\ rk—3-(a) i ],
igx] [ oX; 1%

is

HAIA

for all a in a Zariski open subset of X. But if r is the rank in C(X), then there is
an invertible | x | matrix A over C(X) and an invertible n x n matrix B over

C(X) such that:
' o, (Lo
A.(axjmod‘n).B-—(oo)

Write 4 = A,/a, B= B,/ where A,,B, are matrices over R, and a,feR,. If
U is the Zariski open set of X where det A,-det B, a-f # 0, then for all ae U,



