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Preface

This book is a significant update of the first four chapters of Symmetries and Differential
Equations (1989; reprinted with corrections, 1996), by George W. Bluman and Sukeyuki
Kumei. Since 1989 there have been considerable developments in symmetry methods
(group methods) for differential equations as evidenced by the number of research
papers, books, and new symbolic manipulation software devoted to the subject. This is,
no doubt, due to the inherent applicability of the methods to nonlinear differential
equations. Symmetry methods for differential equations, originally developed by Sophus
Lie in the latter half of the nineteenth century, are highly algorithmic and hence amenable
to symbolic computation. These methods systematically unify and extend well-known ad
hoc techniques to construct explicit solutions for differential equations, especially for
nonlinear differential equations. Often ingenious tricks for solving particular differential
equations arise transparently from the symmetry point of view, and thus it remains
somewhat surprising that symmetry methods are not more widely known. Nowadays it is
essential to learn the methods presented in this book to understand existing symbolic
manipulation software for obtaining analytical results for differential equations. For
ordinary differential equations (ODEs), these include reduction of order through group
invariance or integrating factors. For partial differential equations (PDEs), these include
the construction of special solutions such as similarity solutions or nonclassical solutions,
finding conservation laws, equivalence mappings, and linearizations.-

A large portion of this book discusses work that has appeared since the above-
mentioned book, especially connected with finding first integrals for higher-order ODEs
and using higher-order symmetries to reduce the order of an ODE. Also novel is a
comparison of various compiementary symmetry and integration methods for an ODE.

The present book includes a comprehensive treatment of dimensional analysis.
There is a full discussion of aspects of Lie groups of point transformations (point
symmetries), contact symmetries, and higher-order symmetries that are essential for
finding solutions of differential equations. No knowledge of group theory is assumed.
Emphasis is placed on explicit algorithms to discover symmetries and integrating factors
admitted by a given differential equation and to construct solutions and first integrals
resulting from such symmetries and integrating factors.

This book should be particularly suitable for applied mathematicians, engineers,
and scientists interested in how to find systematically explicit solutions of differential
equations. Almost all examples are taken from physical and engineering problems
including those concerned with heat conduction, wave propagation, and fluid flow.

Chapter 1 includes a thorough treatment of dimensional analysis. The well-
known Buckingham Pi-theorem is presented in a manner that introduces the reader
concretely to the notion of invariance. This is shown to naturally lead to generalizations
through invariance of boundary value problems under scalings of variables. This
prepares the reader to consider the still more general invariance of differential equations
under Lie groups of transformations in the third and fourth chapters. Basically, the first
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chapter gives the reader an intuitive grasp of some of the subject matter of the book in an
elementary setting.

Chapter 2 develops the basic concepts of Lie groups of transformations and Lie
algebras that are necessary in the following two chapters. By considering a Lie group of
point transformations through its infinitesimal generator from the point of view of
mapping functions into functions with their independent variables held fixed, we show
how one is able to consider naturally other local transformations such as contact
transformations and higher-order transformations. Moreover, this allows us to prepare
the foundation for consideration of integrating factors for differential equations.

Chapter 3 is concerned with ODEs. A reduction algorithm is presented that
reduces an nth-order ODE, admitting a solvable r-parameter Lie group of point
transformations (point symmetries), to an (n — r)th-order differential equation and r
quadratures. We show how to find admitted point, contact, and higher-order symmetries.
We also show how to extend the reduction algorithm to incorporate such symmetries. It
is shown how to find admitted first integrals through corresponding integrating factors
and to obtain reductions of order using first integrals. We show how this simplifies and
significantly extends the classical Noether’s Theorem for finding conservation laws (first
integrals) to any ODE (not just one admitting a variational principle). In particular, we
show how to calculate integrating factors by various algorithmic procedures analogous to
those for calculating symmetries in characteristic form where only the dependent variable
undergoes a transformation. We also compare the distinct methods of reducing order
through admitted local symmetries and through admitted integrating factors. We show
how to use invariance under point symmetries to solve boundary value problems. We
derive an algorithm to construct special solutions (invariant solutions) resulting from
admitted symmetries. By studying their topological nature, we show that invariant
solutions include separatrices and singular envelope solutions.

Chapter 4 is concerned with PDEs. It is shown how to find admitted point
symmetries and how to construct related invariant solutions. There is a full discussion of
the applicability to boundary value problems with numerous examples involving scalar
PDEs and systems of PDEs.

Chapters 2 to 4 can be read independently of the first chapter. Moreover, a
reader interested in PDEs can skip the third chapter.

Every topic is illustrated by examples. All sections have many exercises. It is
essential to do the exercises to obtain a working knowledge of the material. The
Discussion section at the end of each chapter puts its contents into perspective by
summarizing major results, by referring to related works, and by introducing related
material.

Within each section and subsection of a given chapter, we number separately, and
consecutively, definitions, theorems, lemmas, and corollaries. For example, Definition
2.3.3-1 refers to the first definition and Theorem 2.3.3-1 to the first theorem in Section
2.3.3. Exercises appear at the conclusion of each section; Exercise 2.4-2 refers to the
second problem of Exercises 2.4.

We thank Benny Bluman for the illustrations and Cecile Gauthier for typing
several drafts of Sections 3.5 to 3.8.

Vancouver, British Columbia, Canada George W. Bluman
St. Catharines, Ontario, Canada Stephen C. Anco
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Introduction

In the latter part of the nineteenth century, Sophus Lie introduced the notion of
continuous groups, now known as Lie groups, in order to unify and extend various
specialized methods for solving ordinary differential equations (ODEs). Lie was inspired
by the lectures of Sylow given at Christiania (present-day Oslo) on Galois theory and
Abel’s related works. [In 1881 Sylow and Lie collaborated in a careful editing of Abel’s
complete works.] Lie showed that the order of an ODE could be reduced by one,
constructively, if it is invariant under a one-parameter Lie group of point transformations.

Lie’s work systematically related a miscellany of topics in ODEs inciuding:
integrating factor, separable equation, homogeneous equation, reduction of order, the
methods of undetermined coefficients and variation of parameters for linear equations,
solution of the Euler equation, and the use of the Laplace transform. Lie (1881) also in-
dicated that for linear partial differential equations (PDEs), invariance under a Lie group
leads directly to superpositions of solutions in terms of transforms.

A symmetry of a system of differential equations is a transformation that maps
any solution to another solution of the system. In Lie’s framework such transformations
are groups that depend on continuous parameters and consist of either point
transformations (point symmetries), acting on the system’s space of independent and
dependent variables, or, more generally, contact transformations (contact symmetries),
acting on the space of independent and dependent variables as well as on all first
derivatives of the dependent variables. Elementary examples of Lie groups include
translations, rotations, and scalings. An autonomous system of first-order ODEs, i.c., a
stationary flow, essentially defines a one-parameter Lie group of point transformations.
Lie showed that for a given differential equation (linear or nonlinear), the admitted
continuous group of point transformations, acting on the space of its independent and
dependent variables, can be determined by an explicit computational algorithm (Lie’s
algorithm).

In this book, the applications of continuous groups to differential equations make
no use of the global aspects of Lie groups. These applications use connected local Lie
groups of transformations. Lie’s fundamental theorems show that such groups are
completely characterized by their infinitesimal generators. In tumn, these form a Lie
algebra determined by structure constants.

Lie groups, and hence their infinitesimal generators, can be naturally extended or
“prolonged” to act on the space of independent variables, dependent variables, and
derivatives of the dependent variables up to any finite order. As a consequence, the
seemingly intractable nonlinear conditions for group invariance of a given system of
differential equations reduce to linear homogeneous equations determining the
infinitesimal generators of the group. Since these defermining equations form an
overdetermined system of linear homogeneous PDEs, one can usually determine the
infinitesimal generators in explicit form. For a given system of differential equations, the
setting up of the determining equations is entirely routine. Symbolic manipulation
programs exist to set up the determining equations and in some cases explicitly solve
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them [Schwarz (1985, 1988); Kersten (1987); Head (1992); Champagne, Hereman, and
Wintemnitz (1991); Wolf and Brand (1992); Hereman (1996); Reid (1990, 1991);
Mansfield (1996); Mansfield and Clarkson (1997); Wolf (2002a)].

One can generalize Lie’s work to find and use higher-order symmetries admitted
by differential equations. The possibility of the existence of higher-order symmetries
appears to have been first considered by Noether (1918). Such symmetries are
characterized by infinitesimal generators that act only on dependent variables, with
coefficients of the generators depending on independent variables, dependent variables
and their derivatives to some finite order. Here, unlike the case for point symmetries or
contact symmetries, any extension of the corresponding global transformation is not
closed on any finite-dimensional space of independent variables, dependent variables and
their derivatives to some finite order. In particular, globally, such transformations act on
the infinite-dimensional space of independent variables, dependent variables, and their
derivatives to all orders. Nonetheless, a natural extension of Lie’s algorithm can be used
to find such transformations for a given differential equation.

For a first-order ODE, Lie showed that invariance of the ODE under a point
symmetry is equivalent to the existence of a first integral for the ODE. In this situation a
Jirst integral yields a conserved quantity that is constant for each solution of the ODE.
Local existence theory for an nth-order ODE shows that there always exist » functionally
independent first integrals of the ODE, which are quadratures relating the independent
variable, dependent variable and its derivatives to order n~1. Correspondingly, an nth
order ODE admits n essential conserved quantities. Moreover, it is a long-known result
that any first integral arises from an integrating factor, given by a function of the
independent variable, dependent variable and its derivatives to some order, which
multiplies the ODE to transform it into an exact (total derivative) form.

For a higher-order ODE, a correspondence between first integrals and invariance
under point symmetries holds only when the ODE has a variational principle
(Lagrangian). In particular, Noether's work showed that invariance of such an ODE
under a point symmetry, a contact symmetry, or a higher-order symmetry is equivalent to
the existence of a first integral for the ODE if the symmetry leaves invariant the
variational principle of the ODE (variational symmetry). Here it is essential to view a
symmetry in its characteristic form where the coefficient of its infinitesimal generator
acts only on the dependent variable (and its derivatives) in the ODE. The determining
equation for symmetries is then given by the linearization (Fréchet derivative) of the
ODE holding for all solutions of the ODE. The condition for a symmetry to be a
variational symmetry is expressed by augmenting the linearization of the ODE through
extra determining equations. Integrating factors are solutions of the resulting augmented
system of determining equations.

For an ODE with no variational principle, we show that integrating factors are
related to adjoint-symmetries defined as solutions of the adjoint equation of the
linearization (Fréchet derivative) of the ODE, holding for all solutions of the ODE. In
particular, there are necessary and sufficient extra determining equations for an adjoint-
symmetry to be an integrating factor. This generalizes the equivalence between first
integrals and variational symmetries in the case of an ODE with a variational principle, to
an equivalence between first integrals and adjoint-symmetries that satisfy extra adzomt
invariance conditions in the case of an ODE with no variational principle.
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As a consequence, adjoint-symmetries play a central role in the study of first
integrals of ODEs. Most important, an obvious extension of the calculational algorithm
for solving the symmetry-determining equation can be used to solve the determining
equation for adjoint-symmetries and the augmented system of determining equations for
integrating factors.

Integrating factors provide another method for constructively reducing the order
of an ODE through finding a first integral. This reduction of order method is
complementary to, and independent of, Lie's reduction method for second- and higher-
order ODEs. In particular, the integrating factor method is just as algorithmic and no
more computationally complex than Lie's algorithm. Moreover, with the integrating
factor approach one obtains a reduction of order in terms of the given variables in the
original ODE, unlike reduction through point symmetries where the reduced ODE
involves derived ind~pendent and dependent variables (and usually remains of the same
order as the given OD'Z if expressed in the original variables).

If a system of PDEs is invariant under a Lie group of point transformations, one
can find, constructively, special solutions, called similarity solutions or invariant
solutions, that are invariant under a subgroup of the full group admitted by the system.
These solutions result from solving a reduced system of differential equations with fewer
independent variables. This application of Lie groups was discovered by Lie but first
came to prominence in the late 1950s through the work of the Soviet group at
Novosibirsk, led by Ovsiannikov (1962, 1982). Invariant solutions can also be
constructed for specific boundary value problems. Here one seeks a subgroup of the full
group of a given PDE that leaves invariant the boundary curves and the conditions
imposed on them [Bluman and Cole (1974)]. Such solutions include self-similar
(automodel) solutions that can be obtained through dimensional analysis or, more
generally, from invariance under groups of scalings. Connections between invariant
solutions and separation of variables have been studied extensively by Miller (1977) and
coworkers. For ODEs, invariant solutions have particularly nice geometrical properties
and include separatrices and envelope solutions {Bluman (1990c); Dresner (1999)].






