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Preface

This volume is a result of a special session at the AMS Fall Southeastern Sec-
tional Meeting, which was held at Tulane University in New Orleans, LA, October,
2012. That special session was focused on simulating the motion of an incompress-
ible fluid driven by flexible immersed structures. Active biological tissue is typically
constructed of fibers that are surrounded by fluid; the fibers not only hold the tissue
together but also transmit forces that ultimately result in fluid motion. In other
cases, the fluid may flow through flexible conduits such as blood vessels or airways
that both react to and affect the fluid dynamics. Additional examples arise in the
context of external fluid flows in biological and engineering applications, such as the
dynamics of insect wings, flagellated or ciliated organisms, suspensions of blood cells
and other synthetic particles. In addition to solving biologically motivated ques-
tions, there is tremendous interest in the development and application of advanced
computational techniques to solve these fluid-structure interaction problems.

Given the widespread interest among mathematicians, biologists, and engineers
in fluid-structure interaction problems, we believe that this volume is both timely
and valuable; this is particularly true because of recent algorithmic improvements.
The focus of this volume will be on three main themes: (i) formulation and analy-
sis of mathematical equations that describe fluid-structure interactions in biological
systems, (ii) algorithmic and computational issues related to increasing accuracy
and efficiency through use of adaptivity, time-stepping scheme, and regularization,
and (iii) applications to problems in biological and physical sciences, and interpre-
tation of model results.

This volume is organized as follows. It begins with two review articles that dis-
cuss the numerical and computational aspects of fluid-structure interaction prob-
lems. Specifically, these articles focus on the mathematical equations describing
the fluid and structure, as well they describe state of the art computational ap-
proaches to solve the coupled system of equations. Next are original articles that
study small-scale fluid motion driven by cilia and flagella. Biological questions are
addressed in terms of transport of fluid as well as the development and extension
of new numerical methods. Also included are articles that consider a wide vari-
ety of physiological examples, including peristalsis, platelet adhesion and cohesion,
upside-down jellyfish, and dynamics in the rat kidney.

vii
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Simulating Biofluid-Structure Interactions with an
Immersed Boundary Framework — A Review

Sarah D. Olson and Anita T. Layton

ABSTRACT. This review focuses on biofluid-structure interactions that are
modeled using an immersed boundary framework. We consider elastic struc-
tures immersed in a viscous, incompressible fluid that interact with the fluid
via a forcing term in the momentum equation. The standard immersed bound-
ary (IB) method of Peskin is reviewed in terms of numerical implementation,
force derivation, and choice of compactly supported delta function. We then
review related methods including the immersed interface method, generalized
IB method, and regularized Stokeslets methods. Several advances in numerical
methods are detailed, including porous boundaries, multi-fluids, time stepping
strategies, and the incorporation of viscoelasticity. The review ends with a
discussion of advantages of several methods and avenues of future research.

1. Introduction

The interaction between fluid flows and immersed structures are nonlinear
multi-physics phenomena, and their applications can be found in a wide range of
scientific and engineering disciplines. In biology, many applications can be found,
including dynamics of insect wings, flagellated or ciliated organisms, suspensions
of blood cells and other synthetic particles, parachute dynamics, and many more.
This is an active area of research in terms of development of new numerical methods
as well as model development for the structure.

The IB method was originally developed by Peskin [137,138], for studying
blood flow through a beating heart [134]. In this method, a dynamic elastic struc-
ture is immersed in a viscous, incompressible fluid. This mathematical formulation
and numerical method is a framework to model fluid-structure interaction prob-
lems by mechanically coupling the fluid to forces in a support region around the
structure. This is a fully coupled system since the structure is able to alter the
fluid velocity via time and spatially dependent forces exerted on the surrounding
fluid, and in turn, the movement of the structure is determined by the local fluid
velocity.

We will keep with the theme of this volume and focus on aspects of the IB
method of Peskin (1972) and related methods to model biological elastic structures
interacting with a fluid. Since the initial development of the IB method, several
different extensions and variations have been developed. This review will focus on

2010 Mathematics Subject Classification. Primary 76M25, 76Z05, 76Z05.
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2 SARAH D. OLSON AND ANITA T. LAYTON

related methods including the immersed interface method, a sharp interface method
with potentially higher order accuracy, and the method of regularized Stokeslets for
zero Reynolds number applications. We refer the interested reader to reviews on
IB methods for solids [121], engineering applications of fluid-structure interaction
[44,122], and numerical methods for fluid-structure interaction [20,71].

In this review, we will focus on the IB method, its applications. and additional
extensions. A general overview of the IB method and its implementation will be
detailed in §2.1, and applications will be discussed in §4. The IB method has
also motivated the development of the immersed interface method and the method
of regularized Stokeslets, which will be detailed in §2.2 and §2.3 . A few recent
advances for modeling biological structures, e.g. porous boundaries and multi-fluid
domains, will also be highlighted in §3. We will end this review with a discussion
of advantages of particular methods and future avenues of research.

2. Numerical formulations

2.1. Immersed boundary (IB) method. This is a non-conforming method
as two different grids will be used for the structure and the fluid. The fluid motion
will be described by a set of Eulerian variables defined on a Cartesian grid that
does not conform to the geometry of the elastic structure. The motion of the elas-
tic structure will be described using Lagrangian variables defined on a curvilinear
mesh. The IB method employs these two different grids and sets of variables that
communicate with each other via the forcing term of the structure. This allows for
a straightforward implementation of complicated fluid-structure interactions since
the underlying Cartesian grid for the fluid domain is not required to coincide with
the Lagrangian structure. With an evolving structure, the computational com-
plexity is greatly reduced when a stationary, non-deforming Cartesian grid is used
versus remeshing at each time step to have the structure conform to the fluid grid.

Let Q be the fluid domain, which can be a subset of R?, a subset of R?, or an
infinite fluid domain (all of R? or R?). For this discussion, we will restrict Q as
a subset of R?. In €2, points within the fluid that lie on the Cartesian grid of the
fluid domain will be represented as x, where x = (21, x2) in 2-d. The velocity field
u(x,t) and pressure p(x,t) are Eulerian variables that are defined at each point on
the Cartesian grid, corresponding to the fluid domain €. In the classical IB method,
we assume the Newtonian fluid flow is governed by either the Navier-Stokes (NS)
or Stokes (St) equation,

(2.1a)
p (% + u(x,t) - Vu(x, t)) = —Vp(x,t) + uV*u(x,t) + f(x.t), (NS)
(2.1b) 0= —Vp(x,t) + uV*u(x,t) + f(x, ), (St)

where f(x,t) is the Eulerian force density on the Cartesian grid and p and p are
the constant fluid viscosity and density, respectively. Both fluids are assumed to
be incompressible and therefore satisfy

(2.2) V-ux,t)=0 .

When Eq. (2.1a) is nondimensionalized, the Reynolds number Re = pVL/p is a
nondimensional ratio corresponding to the relative contributions of inertial forces
to viscous forces where V' is a characteristic velocity and L is a characteristic length.
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The incompressible Stokes equations, given in Egs. (2.1b) and (2.2), correspond to
the case of zero Reynolds number, where viscous forces dominate and inertial forces
can be neglected.

The structure is parameterized by s and we denote the position of the elastic
structure at time ¢ by X(s,t). In this simplified representation, one can model
elastic structures corresponding to open or closed curves. We assume that the
structure is neutrally buoyant and massless. The Lagrangian domain of the im-
mersed structure is B. The elastic structure exerts a Lagrangian force density on
the surrounding fluid and is given by F(X,t). In order to determine the Eulerian
force density f(x,t), we need to spread the Lagrangian force density F(X,t) to the
Cartesian grid via the following interaction equation,

(2.3) £(x,1) = /B F(X, 1)5.(x — X)ds,

where ¢, is a compactly supported smooth approximation to a ¢ distribution. This
distributes the singular force layer F(X, ) to the surrounding fluid such that f(x,t)
is mainly zero except in a small region around the structure. Examples of compactly
supported delta functions and important properties are defined in §2.1.2 and a
description of the derivation of a Lagrangian force density F(X,¢) is given in §2.1.3.

The motion of the fluid is coupled to the motion of the elastic structure, thus
we must also have a prescribed condition for the movement of the structure. Since
the structure is immersed in a viscous fluid, the velocity across the structure will
be continuous. Therefore, we can enforce a no-slip condition,

0X

(2.4a) S =UX.1)

(2.4b) = /Q u(x, £)0,(x — X)dx,

where the elastic structure X(s,t) will move with the local fluid velocity at that
point, U(X, t). Since the fluid velocity is solved for on the Cartesian grid, we must
use Eq. (2.4b) to interpolate the velocity u(x,t) to get the velocity at the immersed
boundary points, U(X, t). Assuming we have the necessary boundary conditions for
the fluid flow and/or pressure on €, we can solve the incompressible fluid equations,
either Eq. (2.1a) or (2.1b) with Eq. (2.2), for a given immersed structure’s force
density F in Eq. (2.3) using a variety of methods including projection methods and
the use of FFTs on periodic domains [15,62,92,118]. Sample results of the IB
method are given in Fig. 1, where the forces on the immersed boundary points of
the structure are proportional to curvature. The Lagrangian and Eulerian force
density are shown in Fig. 1(a) and (b), respectively.

2.1.1. Summary of Numerical Method. To simplify, let the fluid domain £ be
a subset of R? that is discretized into a uniform Cartesian grid with mesh width
h such that z; = z;_1 + h, y; = y;—1 + h, and x;; = (x;,y;) for i = 1,...,q and
j = 1,...,7. The structure X = (X, Yy) will be discretized at time ¢ = 0 to
have uniform spacing for k = 1,...,m immersed boundary points. At time step n,
assume we have a given discretized configuration of the structure X}. An outline
of the numerical algorithm is as follows:

(1) Evaluate the problem dependent elastic Lagrangian force density F} for
the structure at each of the immersed boundary points X}
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(2) Smooth the force density to the grid via Eq. (2.3) to determine the Carte-
sian grid force density f7;

(3) Solve the fluid equations, Eq. (2.1a) or (2.1b) using the incompressibility
condition in Eq. (2.2) and the problem dependent fluid domain boundary
conditions to determine u™*!(x;;) at each of the Cartesian grid points

(4) Interpolate the Cartesian grid velocity to the Lagrangian structure via
Eq. (2.4b) to determine U"™!(X7) at each of the immersed boundary
points

(5) Update the location of the structure. Use Euler method or higher order
methods such as Runge-Kutta methods to determine X"*! using the no-
slip condition given in Eq. (2.4a)

(6) Repeat

There are a few additional pieces of information to emphasize. In immersed bound-
ary applications, if we have an elastic structure, we want to require that As is
sufficiently small in order to ensure that fluid is not leaking across the immersed
structure. It has been previously shown that this can be done if we choose As = h/2
[138]. In general, most numerical methods handle the force term explicitly, result-
ing in a severe time step restriction due to the stiff material properties of the
immersed structure (see §3.1). Since the immersed boundary smooths or smears
a sharp interface or singular force layer with a smooth approximation to the delta
function, the interface then inherits a thickness that is equivalent to the mesh
width. Above, we have assumed a uniform Cartesian grid where the Eulerian fluid
and pressure are defined. Since the lowest accuracy is in the region of the immersed
structure, adaptive grid methods have been developed to have finer detail in the
region around the boundary to resolve boundary layers or regions of larger vortic-
ity [63]. An explicit, formally second-order accurate in space and time numerical
method, given sufficient smoothness (e.g. thicker boundaries), has been developed
for the IB method using a projection-type method [62,92]. A convergence proof has
been developed for a simplified immersed boundary problem of Stokes flow with an
external force field supported on a curve [123]. Mori is able to give pointwise error
estimates away from the immersed boundary as well as global L™ error estimate of
the velocity. The work of Mori [123] was a major convergence result, proving that
the velocity field solved for in the IB method converges to the true solution.

2.1.2. Delta function. The delta function d. in Eq. (2.3) and (2.4b) is replaced
by a product of one-dimensional discrete delta functions that are scaled by the mesh
width h. For example, in 3-d,

2.5 00 = 50 (7)o (1) 6 (3)

where h is mesh width. We note that spreading is the adjoint of interpolation when
the same delta function is used in both Eqgs. (2.3) and (2.4b) [138]. Now we will
consider how to determine ¢(r) satisfying certain properties, where r is defined as
z;/h, y;/h, or zi/h. The goal is to have a continuous ¢ in order to avoid jumps in
velocity or force on the Cartesian grid. We wish to enforce, in a distributional sense,
that 6. — 0 when h — 0. To increase computational efficiency, we can require that
¢(r) has compact support, e.g. ¢(r) = 0 for » > 2. In order to interpolate the
velocity from the Cartesian grid to the Lagrangian structure in Eq. (2.4b), we wish
to enforce exact interpolation of linear functions and second order interpolation
for smooth functions. This can be satisfied if ¢ is chosen to satisfy the following
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FIGURE 1. An example of an immersed boundary simulation
where forces are proportional to the curvature. In (a), the per-
turbed circle is immersed in a viscous, incompressible fluid and
visualized with the dashed lines. A subset of the Cartesian grid
points are denoted by smaller circles on the domain and the La-
grangian singular force density F(X,¢) on the immersed boundary
are shown with the vectors on the structure. In (b), this is a later
time point where the Eulerian force density f(X,t) is shown on the
Cartesian grid by spreading the Lagrangian force density via
Eq. (2.3).

equations,

1
2.6 7)) = _ iy
(2.6a) 2 =) 2 sr=i)=35,
J even j odd
(2.6b) > (r=5)é(r—35)=0,
J

for all real . The first equation, (2.6a), is an even-odd and zero™ moment condi-
tion, which ensures that the central difference operators apply the correct weight to

the points. The second equation, (2.6b), is a first moment condition. An example
of a function ¢ that satisfies these conditions and others is,

0 [r| > 2

§(6+2r —v-7T—12r —4r2), —2<r<-1
(2.7) d(r)=14 sB+22r+VI—dr—4?), -1<r<0

sB—2r+V1+4r—47), 0<r<1

1

§(0—=2r—v-T+12r—4r2), 1<r<2

In order to have expressions for mass, momentum, and torque be the same when
evaluated both in the Lagrangian and Eulerian form, this will depend on the specific
properties of the delta function used [138]. Please refer to [138] for a list of
additional conditions to determine the compactly supported delta function given in
Eq. (2.7). Recently, Liu and Mori [113] have further analyzed properties of delta
functions in reference to convergence of the IB method. They have shown that
another property, called the smoothing order, is also very important in terms of
convergence.
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2.1.3. Forces and Energy Functions. The force density that the elastic structure
exerts on the surrounding fluid will vary greatly based on the properties of the given
structure. The stress and deformation of the elastic structure are determined by a
given constitutive law and this is then transmitted to the fluid through a localized
force density term in the momentum equations, either Eq. (2.1a) or (2.1b). To
highlight a few basic principles, we will briefly describe a few types of force densities
that may be included at a given point in time on the structure. Since the immersed
structure is assumed to be neutrally buoyant, traditional IB methods do not account
for gravitational forces.

A structure can be assigned a prescribed motion. This has been used to rep-
resent structures with zero or minimal movement as well as structures that have
a time dependent prescribed motion [8,39,92]. In this formulation, we think of
a stiff spring with a restoring force that attempts to keep the given point at the
desired or ‘tethered’ configuration. The discretized form of this force density is,

(2.8) Fj = —Sp(X — Xtether)

where St is a coefficient and X{¢*"" is the tethered or desired location for the k"
immersed boundary point. We can view a tether force density as a spring with zero
resting length connecting Xi_"'”"”’ and Xy. This tends to penalize deviations from
the desired configuration.

In the IB method, the immersed structure is generally assumed to be elastic.
In order to describe the stretching of this elastic structure, we idealize elastic links
connecting the points via stiff springs that are assumed to be governed by Hooke’s
law (linear spring force). Between the points X and Xy, the spring connecting
these two points is generating force at each of these two points, trying to maintain
the specified separation. This corresponds to the following discretized form of the
force density F exerted on the surrounding fluid at the point Xy,

Xy — Xp-1 ]

F(X,)=-|S Xi — Xi—1l| = ) ——=————

(K6) == [Sir (1%e = Xecl] - 0 EERE

Xj — Xyt }

2.9 —|S X — Xkl =) ——————

(29) S (s = Xl - ) =
where Sy is a spring constant or stiffness coefficient, || - || denotes the Euclidean

norm, and £ is the resting spring length, which corresponds to the immersed bound-
ary spacing in many problems. In Eq. 2.9, the first term corresponds to the spring
force due to the spring connecting X;_; and X and the second term corresponds
to the spring force between X and Xy. If a larger value of Sy is specified, this
will cause the rest length to be more strictly enforced. We can also approximate
inextensible materials by using a very large stiffness coefficient Sy. We can also
formulate the force in terms of the tension in a fiber or section of the immersed
structure. The fiber is assumed to only sustain tension in the direction of the fiber,
7. Then, force balance on a given segment of the fiber can be used to write the
force density as

(2.10a) F = —E(TT) .
ds
ax
(2.10b) 7= 08
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where 7 is the unit tangent vector. When we assume the tension 7" on the fiber is
a linear function of the fiber strain, we can write:

0X
(2.11) T=S8
s
where S is a stiffness coefficient. In this particular case, the force density becomes
0°X
12 =-S—.
(2.12) F S 552

If a centered difference approximation of the derivative in Eq.(2.12) is used, one
arrives at an expression like Eq. (2.9) for the force at a given point on the immersed
structure. Thus, a spring model can be formulated as a discretization of the above
fiber model.

We can also determine force density by first postulating an energy functional
E that determines the elastic potential energy stored in the structure at a given
time point. This postulated variational energy functional is set up to ensure that
it is non-negative, translation and rotation invariant, and formulated such that the
structure will want to minimize this energy. If we consider a perturbation of the
given structure X as PX, the corresponding perturbation in the elastic energy is

(2.13a) PE = — / (F-PX(s,t))ds ,
B
PE
13b —r
(2.13Db) F X

where F is the Frechet derivative of E, defined implicity and corresponding to the
amount of force that is generated by a perturbation in the elastic structure. Note
that F corresponds to the force density exerted by the structure on the surrounding
fluid and this formulation corresponds to virtual work on an elastic structure due
to a perturbation of the structure.

In this energy formulation, the extent to which the energy is minimized will
depend on the material properties of the elastic structure as well as the surrounding
fluid environment. As an example, we could assume the following elastic energy

(stretching),
> ds

(2.14) E:/BE<H

where € is a local stretching energy density to be specified. This energy corresponds
to the elasticity determined by the strain in the direction of the fiber, as derived
above. Using this energy, the perturbation operator can be applied to both sides
of Eq. (2.14). Assuming that tension T in Eq. (2.11) is also equivalent to the
derivative of &'(]|0X/0s||), we can use integration by parts to simplify the integral.
Thus, we can arrive at Eq. (2.12) or Eq. (2.9) using an energy argument. This
energy formulation and derivation can also be extended to more complicated elastic
structures.

For a more extensive derivation and examples, we refer the reader to [138]. Ad-
ditionally, we wish to note that the choice of parameters in these energy functions
and forces are not always determined in an ad hoc manner. For a given applica-
tion, one can choose stiffness parameters to reflect the material properties of the
structure. In order to estimate the flexural rigidity of an elastic structure, one can
follow the procedure of Lim and Peskin [108].

0X
0s
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2.2. Immersed interface method. The IB method is a powerful numerical
method but as with almost all numerical methods, it has some drawbacks. IB
methods are typically first-order accurate in the infinity norm. Also, because the
boundary forces are spread out, the jump discontinuity in the pressure solution is
not captured; instead, the computed pressure approximation has a sharp gradient
near the immersed boundary. In fact, the pressure approximation has O(1) Liy¢
error and error in the pressure gradient translates into inaccuracy in boundary
velocity. As a result, the IB method is known to exhibit “leakage” (i.e., an area
in 2-d or a volume in 3-d enclosed by the immersed boundary or surface tends to
decrease in time), unless corrective procedures are applied (e.g., [32,136]).

As a remedy, LeVeque and Li developed the immersed interface method, which
yields second-order accurate approximates and robustly captures jump discontinu-
ities in the solution and its derivatives. The key idea of the immersed interface
method is to incorporate known jumps in the solution into the finite difference
stencil. This method has been successfully implemented and used for both 2-d and
3-d fluids.

2.2.1. A simple elliptic interface problem. To motivate the immersed interface
method, let’s first consider a simple 1-d elliptic interface problem:

(2.15) (Bug)e = f+od(r—a), 0<z,a<1,

where f is smooth but f is discontinuous at z = a. We re-state the problem in
terms of the jump conditions:

(2.16) (Buz)s = f, z€(0,0)U(a,1),
(2.17) W=ut—u" =0, [Bus)=0, [Buw]=0.

where u® = lim,_,+ u(a + ).

Suppose we discretize Eq. (2.16) using a centered difference scheme. We will
separately consider grid points that are sufficiently far from x = « such that the
associated finite difference stencils do not cross ¢ = a (which will be referred to
as “regular points”), and those whose stencils do cross z = « (“irregular”). For a
regular point z;, the discretized form of Eq. (2.16) is
(2.18) h_12 (ﬁi+% (wit1 —ui) = By (ui — u,-_l)) = fi

where h denotes the mesh width.
The finite stencil for an irregular point x;, where z; < a < x;41, will need to

be modified in order to attain second-order accuracy. Also, a correction term C;
will be added:

(219) aui—1 + bu; + cuipq = fi +C;

To determine the coefficients and correction term C;, we apply Taylor expansion of
;+1 and u;—q around a:

1
(2.20)  wu(zip) =ut(a) + (Tip1 — @)uf (@) + 5 (@it = a)*uf, (@) + O(h%)

(2.21) w(zi—1) =u (a) + (z; — a)uy () + %(,xZ —a)?u,,(a) + O(h®)

Now recall that
[Bug) =0 = BTuf —Bu; =0
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which, together with u* = «~ and u, = u,,, can be used to eliminate from
Eq. (2.20) all u terms with right-side limits to yield
(2.22)
_ 8- _ o 1 9 _ 3
u(xipr) =u" (@) + (ziy — ) [j—+uT (o) + 57 + 5(:1‘,;4_1 — ) ug, (o) + O(h?)

Substituting Eqs. (2.21) and (2.22) into Eq. (2.19) and rearranging, one obtains

au;—1 + bu; + cuiqq

=(a+b+c)u” () + <(;1:7<1 —a)a+ (x; —a)b+ g—+(;m+1 - a)c) uy ()
+c(Tip1 — oz)i + ! (('zr- 1—a)a+ (x; —a)’b+ ﬁ—(r 1— a)2c> Uy ()
2 1 /;H' 2 Ly — 1 L_H_ L4 T

=(Bug)e = fi + C;

By matching the coefficients in front of u™(a), u} (@), and u, (@), we obtain
the following linear system

(2.23) a+b+c=0
(2.24) ((:L',-_l —a)a+ (x; —a)b+ g—;(;v,»ﬂ - ()1)0) u, () =0
(2.25) % ((.L'i,l —a)?a+ (z; —a)?b+ g—;(miﬂ —~ a)%) =p3"

which can be solved for a, b, and ¢. Then by equating the higher-order terms, we
obtain an expression for the correction terms:

(2.26) Ci =c(@it1 — ﬂ)[%
Q+
I

FIGURE 2. Model configuration for an immersed interface problem.

2.2.2. Stokes and Navier-Stokes equations. The singular boundary forces in-
duce jump discontinuities in the pressure and normal derivatives of the velocity.
But unlike the elliptic interface problem in the preceeding subsection, those jump
conditions are not given explicitly. Instead, they can be computed from the bound-
ary forces. Let f, and f. denote the normal and tangential components of the
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boundary forces, expressed per unit current arclength «, then it has been shown
that for the Stokes equations [100]

(227) [P] = fn- [Pn] = %fv—«
(2.28) [u) = [v] =0,
(2.29) [pun] = frsinf,  [uv,] = —frcosf

where 6 denotes the angle between the tangent line and the x-axis. Model con-
figuration for a immersed interface problem is illustrated in Fig. 2. Note that the
immersed boundary is a closed curve. This is no accident. The derivative of the
jump conditions (2.27)—(2.29) requires a closed curve (or closed surface in 3-d).
This is indeed a limitation of the immersed interface method that the IB method
does not share.

We will describe the procedures by which the steady-state Stokes equations can
be solved using the immersed interface method. The immersed interface method
can also be applied to the Navier-Stokes equations [103,169], but as might be
expected, the procedures are more complicated. For a fluid with uniform viscosity,
the Stokes equations are (2.1b) and (2.2); that system can be solved simultaneously
as a coupled system. Alternatively, the system can be reduced to a sequence of
three Poisson problems, as described below. Applying the divergence operator to
Eq. (2.1b) yields

(2.30) Ap=V-f

which we will solve by setting the right-hand-side to zero and by incorporating the
jump conditions (2.27). Consider the 2-d problem following a procedure similar to
§2.2.1, we discretize Eq. (2.30) to obtain the finite-difference equations

(2.31) (Pit1,j +Pi-1,j — 4Pij + Pij—1 +Ppij+1) = Cij

n?
where the correction terms C; ; are zero except at irregular points.
Next we solve the Poisson equations (2.1b) for u and v. The finite difference

equation for u takes the form
(2.32)
1 1 5

?L? (u,~+1,j +ui—1y — 411,,;,] + ujj—1+ llq’,j_H) = EE (p~F1i+1Aj = ])g:i_lhj) + Ci_j
where the correction term CA’i,_,- corrects for the approximation of p,, and accounts
for the jump discontinuities in the derivative of u. The procedure for v is analogous.

To summarize, the steps in which the immersed interface method can be used
to simulate the interactions between a Stokes fluid and an immersed boundary are
as follows. At time t", the boundary position X" is known.

(1) From the boundary configuration X", compute boundary forces f".

(2) From the boundary forces ", compute jump conditions (2.27)(2.29).

(3) Form the correction terms, which are functions of the jump conditions
above, and solve Egs. (2.31) and (2.32), plus analogous equation for v.

(4) Advance the boundary (see §2.1).

2.3. Regularized Stokeslet method. Many fluid-structure interaction prob-
lems involve small length scales and/or large viscosity, where the Reynolds number
is approximately zero. In these applications, one could use the IB method detailed
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in §2.1, solving the incompresible Stokes equations in Eq. (2.1b)-(2.2) or solving
the incompressible Navier-Stokes equations with Re ~ 107 — 1075 in Eq. (2.1a)
and (2.2). In the case of zero Reynolds number applications, other methods can be
used since the Stokes equations are linear, have no memory, and the only time de-
pendence will be from a forcing term due to the immersed structure. Fundamental
solutions exist for the Stokes equations; this allows for the use of Lagrangian meth-
ods such as boundary integral methods and the method of regularized Stokeslets
as an alternative to the IB method.

In a 2-d infinite fluid domain, the Stokeslet (or Green’s function) is the fluid
flow that results from a point force of strength g, applied at the point X, and is
given by

g0 - (x — X,)](x = X,)
47 pr?

(2.33) u(x) = Be In(r) +

e (2-d)

where r = ||x — X,||. The velocity behaves like In(r) in the 2-d Stokeslet. We will
primarily focus this discussion on 2-d fluids. However, there is also a fundamental
solution for a point force in a 3-d fluid that behaves like 1/r.

The structures can be closed or open curves, as well as sets of disconnected
points. The forces are then applied on the given structure. Due to the linearity
of the Stokes equation, we can write the resulting velocity as a superposition of
Stokeslets when there are several point forces. The method of regularized Stokeslets,
developed by Cortez et al. [29,31], regularizes the singularity at x = X, in the
denominator. The approach is similar to that of the IB method, in that the singular
force will be spread to the surrounding fluid.

In the IB method, a compactly supported smooth approximation to the § func-
tion was used to spread forces to the Cartesian fluid grid via Eq. (2.3). Here, we
will use a blob or cutoff function v that is a radially symmetric approximation
to the § function. The cutoff function can have compact or infinite support and
has that the property that the integral of 1. on the infinite fluid domain is equal
to 1. Note that since this a Lagrangian method, an infinite support blob does not
decrease computational efficiency as it would in the standard IB method introduced
in §2.1. If using a blob function with infinite support, the majority of the force will
be concentrated within a region around the point force and will then decay quickly.
An example blob function is,

2t

(2.34) Ve = m
The form of the blob functions are derived in order to solve Stokes equations for
a regularized force as well as ensuring that when taking lime — 0, we recover a &
function.

In the method of regularized Stokeslets (MRS), we wish to solve the incom-
pressible Stokes equations where the force density f is given as a regularized point
force g, at X,

(2.35a) pAu(x) = Vp(x) — gote(x — X,)
(2.35b) Vou(x)=0 .

(2-d).

The exact solution is no longer the Stokeslet as given in Eq. (2.33). For a given
choice of regularization function v, we now need to derive a regularized Green’s
function G, that satisfies AG, = 1).. Since 1), is radially symmetric, we assume



