[l 5 B <72 44 5 & 5

(FZENRR) 22

Victor N.Kasyanov
Vladimir A.Evstigneev

Graph Theory for Programmers
Algorithms for Processing Trees

Pel V& 4 Fi

DEMEIE

wnp 44 % M

A www:sciencep.com

£ :01-2005-6746

Victor N. Kasyanov, Vladimir A. Evstigneev: Graph Theory for Program-
mers; Algorithms for Processing Trees
© 2000 Kluwer Academic Publishers

This reprint has been authorized by Springer-Verlag (Berlin/Heidelberg/New
York) for sale in the People’s Republic of China only and not for export there-

from,

A5 P SUR B AR p 8 1 0 ARG L AR R BRA AR, R & R I
A, ABLMEM T RERHRPRE BHEMRS . ABMREPEARI
MEHE BB O. BEURA, BELR.

B HB7ERR SR B (CIP) 8%

EiEH PR : 5 KW B 3 = Graph Theory for Programmers; Algorithms for
Processing Trees/ (&% #f) & ¥ I i Kk (Kasyanov, V. N.) . —BEIR —
Jb 3 Bl W A, 2006

(RSNBCEZBERTD

ISBN 7-03-016678-7

. @ I F- O.ORR-EXORBERE-EX N.0157.5
o B A A 4548 CIP BB 4 (2005) 5 154398 5

3 x ko8 R
R ER R 165
HRIE 4459:100717
http:// www . sciencep.com

F¥OMECH I ENR
B RTT SHFERESS
20064E 1 A — MR JF4 :B5(720X1000)

2006 4F 1 A —KEIR Ep3K.28

Ep¥.1—2 500 F¥.529 000
E#:70.00 5T

(AN B3 PR B [A) B8, At s A H (BLED))

(EMFZERIN(MEOR)ERERS
(et BT

THE I A BHE By PRk FAT
FRA& RAF et B K £HH K F

5 H 3R R
MEs K oW IAF 3 K EAE I B
HATaR R

(ESMNFRZERTD (RENW) F

EFREAREE L EIF R RER, FEREZRIAS AT HER 1
Bh. H—HH, RITBEAER L ANBEERAE ER KR RECEF L SNE
. X EERMEMNBEEF WM T SRR NE, FRERARTFHTESE
E&M, Rt aEsE S mmesy s g TIE,

MR E R, BR T E R R AR IRAT B C BRI, 51 E MY e
WY RN R T EESOLAT /DK, WEEFERG, %A (Springer) H
Wkt AR MR E R AR AL, Bl S A ED— R AT H AR B B
¥, FRET K FEREURMAIMBIL, FARAENTHX TEMBFER
BB R B, RERMNENREREMRMSHET A RNE.

XRBHEERRAEMSE T AL, —WRFEED T 23 A3 AR H AR AL H R A0 2502
B, MR GE, WRESHEMT XZNEE. KKES—T, X 23 &4+,
ARERMBEEN 5 A&, MAHBFES 6 A S5ITERFS 124, HPFLEitbAR
AR, XEHERBI N, 2000 FLUE BB L% RS, it 164, H
ARBIHLE 1990 UG B ARRG . X 6] U e B ot T AR B0 5 05 T ARG,
Bl RE P B . RESHIN=A, BERIZMEABFRREN B
BREE” @M. XAEXFERREFER TR ARIT SRR E#H
By, EBERRRA, ERBCERMBL ‘g hE, NAMTERERNS
LAl R E. QERRNEESBEBRRALZHREER, Bl (Ribg) —
BRIERRER KRBT IR ERMBEE, Bk “FERER” M “RIRKE¥
27, KB RBFEROEELER 2R ENB A REDEFIFHERER.

LR, 23K PREERBEFEN IS, BrLL, XTI TN Xk T %.
B, AHEERR) WEBENZBAERPCHR, F2HEKMIE
EH.

S22 BB R ENHE L A& HH AR A A RB M B A — R FR B
PN ZHR, HHEX—TEREE KRS,

20054E 128 3 H

Dedicated to the memory
of Andrei Petrovich Ershov

PREFACE

Although the first book devoted to the theory of graphs appeared in 1935, the exten-
sive application of the methods of this theory in scientific and engineering research was
originated only in the 50s. Thus, the books published at the beginning of the 60s (C.
Berge, R. Busacker, and T. Saaty) already contained materials on the applications of the
theory of graphs to the theory of operations, discrete optimization, electrical engineering,
etc. They were followed by books completely devoted to the applications of the theory
of graphs to certain fields of knowledge, including programming. Among these books,
one should especially mention “The Introduction to Theoretical Programming. Discus-
sion of a Method” by A. P. Ershov (1977), “Applications of the Theory of Graphs to Pro-
gramming ” by V. A.Evstigneev (1985), “Optimizing Transformations of Programs” by
V. N.Kasyanov (1988), and “Combinatorial Analysis for Programmers” by V. Lipskii
(1988), where a great experience of application of the methods of the theory of graphs to
the analysis, optimization, and transformation of programs, organization of the process
of computations, estimation of the complexity of programs, etc., is generalized and sys-
tematized.

The first (pioneer) works devoted to the application of the theory of graphs in pro-
gramming were A. P. Ershov’s papers concerning the organization of calculations of
arithmetic expressions (1958) and the optimal use of random-access memory (1962) and
R. Karp’s note (1960), where a graph-theory model of a program in the form of a control
(or transition) graph was proposed and used for the first time. At present, this model is
classical for the solution of the problems of translation. It is extremely useful for subse-
quent investigations and practical applications in automated systems, in particular, for
the verification of programs for correctness and their optimization. This model preserves
its high importance even after the long-term evolution of computer architecture. Thus,
the control graph serves as a basis of many intermediate representations of programs and
their transformations used in vectorizing and parallelizing compilers for computers with
parallel architecture.

Parallel with the control graph, the following graph models are extensively used in
the practice of programming: the graph of procedure calls, the graph of dependences on
the data, addressed data graphs, syntax and parsing trees, imbedding trees, sorting trees,
dominator and postdominator trees, etc. Many other models widely used in programm-
ing, such as computational models, semantic and associative networks and operator
schemes, Petri networks, Welbicki R-graphs, etc., can also be regarded as graph-theory
models.

viii Preface

In delivering lectures and writing books, we were most often forced to pay absolutely
no attention to a great body of interesting results and useful algorithms appearing in
numerous sources and occasionally encountered. It was absolutely that most of these re-
sults would finally be forgotten because it is impossible to run through the entire variety
of sources where these materials could be published. Therefore, we decided to do what
we can to correct this situation. We discussed this problem with Ershov and came to an
idea to write an encyclopedia of algorithms on graphs focusing our main attention on the
algorithms already used in programming and their generalizations or modifications. We
thought that it is reasonable to group all graphs into certain classes and place the algo-
rithms developed for each class into a separate book. The existence of trees, i.e., a class
of graphs especially important for programming, also supported this decision.

This monograph is the first but, as we hope, not the last book written as part of our
project. It was preceded by two books “Algorithms on Trees” (1984) and “Algorithms of
Processing of Trees” (1990) small editions of which were published at the Computer
Center of the Siberian Division of the Russian Academy of Sciences. The books were
distributed immediately and this made out our decision to prepare a combined mono-
graph on the basis of these books even stronger. We called it “Theory of Graphs: Algo-
rithms of Processing of Trees” rather than “Algorithms on Trees” in order to prevent the
appearance of our book in the section of biology of libraries as already happened.

This book is intended to be not only a reference book of algorithms but also an intro-
duction to the part of the theory of graphs that studies trees and their applications. We
make an attempt to give a concise but more or less complete description of basic notions,
properties, and fields of applications of trees. We clearly understand that it is impossible
to include in the monograph all known algorithms but, at the same time, we have a hope
that our collection is sufficiently representative. The reader can learn about algorithms
that are not discussed into the book for various reasons from the bibliographic comments
at the end of each chapter. These comments also give the reader a possibility to get some
information about the history of development and current state of various problems of
the theory of graphs and its applications. As far as the classical theory of graphs is con-
cemed, the reader is referred to the additional list of references at the end of the book.

The monograph consists of eight chapters split into three parts. In the first part, we
present main notions, properties of trees, and some basic algorithms, such as search in
depth, the algorithms of coding and generation of trees, etc. The second part deals with
the applications of trees to the problems connected with the structuring of programs, uni-
fication, systems of rewriting of terms, syntax analysis, etc. The third part is devoted 10
the problems of data storage and retrieval.

The book was partially financially supported by the Russian Foundation for Funda-
mental Research (Grant No. 93-012-576) and the Ministry of Science, Education and
Technical Politics (Grant No. 2-15-2-43).

Preface

CONTENTS

PART 1. BASIC CONCEPTS AND ALGORITHMS

Chapter 1. TREES AND THEIR PROPERTIES

1.1.
1.2.
1.3.
1.4.

Introduction and Basic Definitions
Representations of Trees
Numbering and Calculation of Trees
Bibliographical Notes

References

Chapter 2. COMPUTATIONAL MODELS. COMPLEXITY AND

2.1.
2.2
2.3.
2.4.

FUNDAMENTAL ALGORITHMS

Introduction. Algorithm Representation Language
Depth-First and Breadth-First Traversals of Graphs and Trees
Generation of Trees

Bibliographical Notes

References

Chapter 3. SPANNING TREES

3.1
3.2
3.3.
34.

The Problem of Finding the Optimal Spanning Tree
Algorithms of Numbering of All Spanning Trees
Search of Spanning Trees with Given Properties
Bibliographical Notes

References

vii

18
39
46
46

49

49
61
91
112
115

121

121
140
154
159
163

iv
PART 2. TRANSLATION AND TRANSFORMATION OF PROGRAMS
Chapter 4. STRUCTURAL TREES

4.1. Introduction and Principal Definitions

4.2. Hierarchical Representations of Regularizable CF-Graphs

4.3. Hammock Representations of CF-Graphs

4.4. Exposure of the Dominance Relation

4.5. Bibliographical Notes

References

Chapter 5. ISOMORPHISM, UNIFICATION, AND
TERM-REWRITING SYSTEMS

5.1. Isomorphisms of Trees
5.2. Problem of Unification
5.3. Term-Rewriting Systems
5.4. Bibliographical Notes

References

Chapter 6. SYNTAX TREES

6.1. Language Syntax and the Problem of Syntax Analysis
6.2. Generative Grammars

6.3. Syntax Analysis

6.4. Translation and Constructors of Analyzers

6.5. Bibliographical Notes

References

PART 3. SEARCH AND STORAGE OF INFORMATION
Chapter 7. INFORMATION TREES

7.1. Balanced Trees

7.2. Multidimensional Trees (k-d-Trees)

7.3. Bibliographical Notes

References

Contents

175
175

175
187
198
208
215
219

223

223
240
267
283
285

293

293
295
302
323
333
333

337
337

337
364

372
372

Contents
Chapter 8. TREES FOR MULTILEVEL MEMORY

8.1. B-Trees

8.2. Generalizations of B-Trees
8.3. Multidimensional B-Trees
8.4. Multiattribute Trees

8.5. Bibliographical Notes

References

ADDITIONAL LIST OF LITERATURE

SUBJECT INDEX

375

375
385
393
406
418
419

423

427

1. BASIC CONCEPTS AND ALGORITHIMS

Chapter 1
TREES AND THEIR PROPERTIES

1.1. Introduction and Basic Definitions

1.L1. Introductory Remarks. The present chapter contains basic facts about trees
and their properties from the theory of graphs. All notions that are not defined here can
be found in the literature. The number of notions of this sort is made as low as possible.
The properties of trees and the corresponding results are presented independently of their
subsequent use in the algorithms.

1.1.2. Definition of a Tree. An undirected connected graph without cycles is called
arree (Fig. 1.1a). An undirected graph without cycles is called a forest. In other words,
a forest is a disconnected graph any connected component of which is a tree (Fig. 1.1b).

A tree is called finite if the number of its vertices is finite. Otherwise, the tree is in-
finite. The tree with one vertex is called trivial, degenerate, or empty.

The number of vertices in a tree is sometimes called the order of this tree.

The tree without vertices of the second order is called a homeomorphic irreducible
tree. The tree embedded in an Euclidean plane is called planar (see also the definition
of planar graphs in Subsection 1.1.6).

Each of the following definitions completely characterizes a tree:

(i) an undirected graph any two vertices of which are connected by a single chain is
called a tree;

(ii) an undirected graph without cycles is called a tree if the addition of one edge
necessarily leads to the appearance of exactly one cycle;

(iii) an undirected connected graph is called a tree if the removal of any edge leads to
the loss of its connectedness;

(iv) aconnected undirected graph with n vertices and n -1 edges is called a tree;

(v) an undirected graph without cycles (acyclic graph) with n vertices and n— 1
edges is called a tree;

(vi) an undirected graph all chains of which are simple (i.e., any vertex may appear in
a given chain at most once) is called a tree.

Chapter 1

nd Their Properties

Trees a

1.1.3. Catalogue of Trees with at Most Eight Vertices

Table 1.1

iy 4Ty

PHALRTA Y
: rigtf

Section 1 Introduction and Basic Definitions 3

Fig. 1.1

All homeomorphically irreducible trees with at most eight vertices are listed below:

n=1 o
n=2 0—o
n=3 No

n=4

_
1}
W

b]
"
(=)}

1.1.4. Center and Centroid of a Tree. The distance d(x, y) between the vertices
x and y of the tree is defined as the number of edges in the chain connecting these ver-
tices. The distance from a vertex x to the most remote vertex of the tree is called the
eccentricity e(x) of the vertex x, i.e.,

e(x) = max d(x,y)
y

4 Trees and Their Properties Chapter 1
The minimal eccentricity is called the radius r(7T) of the tree T, i.e.,

r(T) = min e(x) = min max d(x,y).
X X y

The maximal eccentricity is called the diameter D(T) of the tree, i.e.,

D(T) = max max d(x, y).
x o y

A vertex x is called a central vertex of the tree if e(x)=r(T). The center of the
tree is defined as the set of its central vertices. The tree whose center is formed by two
vertices is called bicentral.

The center of a tree contains either a single vertex or two adjacent vertices.

The main property of the center of a tree can be formulated as follows:

The center of a tree remains unchanged if we remove all its pendant vcrtices.
The following properties of the trees are connected with the center:

(a) the radius and diameter of a tree satisfy the relation

2r(T) if the center has one vertex,

2r(T)~1 if the center has two vertices;

D(T) = {

(b) each chain of maximal length necessarily passes through the center of the tree.

A branch to a vertex v of a tree T is defined as a maximal subtree containing v as
its pendant vertex. The number of branches to the vertex v is equal to the degree of this
vertex. The weight of a vertex v is defined as the maximal number of edges along all
branches to this vertex. A vertex v is called a centroidal if v its weight is minimal.
The centroid of a tree is a set of all its centroidal vertices.

The centroid of a tree contains either a single vertex or two adjacent vertices.

The trees with one and two central or centroidal vertices and the smallest number of
edges have the form

Center

, N e

Centroid

2 O_H_<<:’ o—o

Section 1 Introduction and Basic Definitions 5

1.1.5. Rooted and Directed Trees. A tree is called rooted if it has a distinguished
vertex r called the root. A tree without roots is sometimes called free. To solve some
problems, e.g., to establish the isomorphism of trees, it is convenient to choose one of the
central vertices as the root.

A directed tree with root r (or an arboricity with root r) is defined as a rooted tree
each edge of which is replaced by an arc so that one can either reach the root moving
from any vertex of the tree in the direction of arcs (tree to point) or reach an arbitrary
vertex moving in the direction of arcs from the root (tree from point). In a tree to point
the root is reachable from any vertex and, vice versa, in a tree from point any vertex is
reachable from the root (Fig. 1.2).

Directed trees are also called ditrees.

It is easy to see that if we specify the root of a tree, then we get a directed tree. For a
tree from point exactly one vertex (the root) has the indegree zero, the indegree of any
other vertex is equal to one. The pendant vertices of a tree from point are called leaves.

Directed trees from point are sometimes called growing.

a b c

Root

Fig. 1.2

Let T(X, U} be a directed tree with root r. The distance d(x, y) between vertices x
and y of a directed tree is defined as the number of arcs in the path fromr x to y. If this
path does not exist, then we set d(x,y)=c. We say that vertices of a directed tree are
located on the kth level (or form the kth stratum) if their distances from the root r are
equal to k. The maximal k for which the kth stratum is nonempty is called the height
of a growing tree. Any vertex of a growing tree can be regarded as the root of the sub-
tree growing from this vertex. The height of the subtree is defined analogously (Fig.1.3).

1.1.6. Ordered and Binary Trees. A directed tree from point is called ordered if
the set of arcs outgoing from any vertex of this tree is ordered. Two isomorphic directed
trees can be nonisomorhic if they are regarded as ordered directed trees with different or-
dering of the outgoing arcs (Fig. 1.4).

Ordered trees are also called planar (see Subsection 1.1.2).

A directed tree is called binary if it can be defined by recursion as follows:

6 Trees and Their Properties Chapter 1

Root

Ist level

2nd level
——
Neighbours 3rd level

4th level

Brothers

Height =5 5th level

Fig. 1.4

(a) the one-vertex tree is binary;

(b) the triple (T}, r, T,) is a binary tree with the left subtree T;, the root r, and the
right subtree 7, ; both 7; and T, are binary trees and may be empty (Fig. 1.5).

This definition implies that any arc going out of any vertex of a binary tree is either
left or right. The only difference between binary and ordered trees is connected with the
situation where a single arc goes out of a vertex. In this case, for binary trees, one must
always classify it as right or left (Fig. 1.6).

Binary trees are also called binary-search trees. Some authors use the term “binary
trees” for ordered trees with either two or no arcs going out of each vertex and the term
“binary-search trees” is then used for trees that are binary in our sense.

Section 1 Introduction and Basic Definitions 7

r r

Fig. 1.6

The notion m-ary trees generalizes the notion of binary trees. In these trees, each
vertex is the root of at most m subtrees each of which, in its turn, is an m-ary tree that
may be empty.

The left-side binary tree is defined by recursion as follows:

(a) the one-vertex tree is a left-side binary tree;

(b) a binary tree whose right subtree is empty and left subtree is a left-side binary
tree is a left-side binary tree.

The right-side binary tree is defined analogously.

1.1.7. Balanced Binary Trees. A binary tree is called balanced in height or an
AVL-tree (after Adelson-Velsky and Landis who described these trees for the first time)
if, for any its vertex, the difference between the heights of the right and left subtrees does
not exceed one.

The height of an n-vertex AVL-tree does not exceed 0.5logn in the worst case and
1.04 log n on the average.

A binary n-vertex tree is called balanced in weight with balance o, 0 < o < 1/2, if
it satisfies the conditions

n1+1

(a) a <
n+1

Sl-a, n=|T;

8 Trees and Their Properties Chapter 1

(b) T, and T, are trees balanced in weight with balance c.

The class of binary trees balanced with in weight is denoted by BB [c.].
There exists a gap in the balances of trees, namely, for all o from the interval 1/3 <
a<1/2, wehave

BB[o] = BB[1/2].

The classes of AVL-trees and trees balanced in weight are different.
The height of a binary n-vertex tree balanced in weight with balance o does not ex-
ceed

log(n+1) -1
log(1-a)™!

Binary trees all leaves of which are located on the same level are called justified.
The justified trees can be grouped into the following classes:

(a) H-trees are trees any vertex of which with one successor has a right neighbor
with two successors;

(b) HB-trees are trees any vertex of which with one successor has a brother with
two successors;

(c) HS-trees are trees such that if a vertex has one successor, then this successor is
either a leaf or has two successors;

(d) k-trees are trees each vertex of which with one successor has at least one right
neighbor and, moreover, the first k right neighbors (or all right neighbors, if their
number is less than k) have two successors.

1.1.8. Spanning Trees and Directed Spanning Trees. A subgraph of an undirected
graph in the form of a tree is called a spanning tree. Spanning trees are also called
frames or contracting trees.

An undirected graph has a spanning tree if it is connected.

A subgraph of a directed graph in the form of a tree directed to point is called its di-
rected spanning tree (spanning tree).

A directed graph has a directed spanning tree with root 7 if all vertices of the graph
are reachable from r or the vertex r is reachable from all other vertices. The first case
corresponds to the spanning tree outgoing from the vertex r and the second case cor-
responds to the spanning tree incoming in the vertex r.

An elementary transformation of a spanning tree T into a spanning tree T is intro-
duced as follows: an edge u is added to the spanning tree T (this results in the forma-
tion of exactly one cycle) and another edge v is removed from the obtained cycle so that

